skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dedekind sums arising from newform Eisenstein series
For primitive nontrivial Dirichlet characters [Formula: see text] and [Formula: see text], we study the weight zero newform Eisenstein series [Formula: see text] at [Formula: see text]. The holomorphic part of this function has a transformation rule that we express in finite terms as a generalized Dedekind sum. This gives rise to the explicit construction (in finite terms) of elements of [Formula: see text]. We also give a short proof of the reciprocity formula for this Dedekind sum.  more » « less
Award ID(s):
1757872
PAR ID:
10325389
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Number Theory
Volume:
16
Issue:
10
ISSN:
1793-0421
Page Range / eLocation ID:
2129 to 2139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Locally trivial bundles of [Formula: see text]-algebras with fiber [Formula: see text] for a strongly self-absorbing [Formula: see text]-algebra [Formula: see text] over a finite CW-complex [Formula: see text] form a group [Formula: see text] that is the first group of a cohomology theory [Formula: see text]. In this paper, we compute these groups by expressing them in terms of ordinary cohomology and connective [Formula: see text]-theory. To compare the [Formula: see text]-algebraic version of [Formula: see text] with its classical counterpart we also develop a uniqueness result for the unit spectrum of complex periodic topological [Formula: see text]-theory. 
    more » « less
  2. Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon, 
    more » « less
  3. Let [Formula: see text] be a set of positive integers, [Formula: see text] denoting the largest element, so that for any two of the [Formula: see text] subsets the sum of all elements is distinct. Erdős asked whether this implies [Formula: see text] for some universal [Formula: see text]. We prove, slightly extending a result of Elkies, that for any [Formula: see text], [Formula: see text] with equality if and only if all subset sums are [Formula: see text]-separated. This leads to a new proof of the currently best lower bound [Formula: see text]. The main new insight is that having distinct subset sums and [Formula: see text] small requires the random variable [Formula: see text] to be close to Gaussian in a precise sense. 
    more » « less
  4. We consider pairs of anti-commuting [Formula: see text]-by-[Formula: see text] Hermitian matrices that are chosen randomly with respect to a Gaussian measure. Generically such a pair decomposes into the direct sum of [Formula: see text]-by-[Formula: see text] blocks on which the first matrix has eigenvalues [Formula: see text] and the second has eigenvalues [Formula: see text]. We call [Formula: see text] the skew spectrum of the pair. We derive a formula for the probability density of the skew spectrum, and show that the elements are repelling. 
    more » « less
  5. Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers. 
    more » « less