Science education integrates the study of and practices from the Next Generation Science Standards (NGSS). At the fundamental level, the pedagogy involves teaching and learning that emphasizes the use of scientific inquiry and the engineering design process to develop students’ problem-solving, critical thinking, and collaboration skills. Unfortunately, funding and professional development for teachers, which is essential to assure successful implementation of science lessons to increase the potential for student achievement, is lacking. Therefore, this NSF-funded science-education research project explored the development of a model that deepens the existing partnerships among grass-roots, non-profit community education organizations, K-12 public schools, and local university partners. Together, they worked collaboratively to develop systems where teachers could implement high-quality, place-based, NGSS-aligned science learning opportunities that actively engage students. This research project may lead to a future proposal for high-quality professional development for teachers, using the Teacher-to-Teacher professional development model, with the goal of impacting student achievement in science. The goals of this research project were to (1) develop a collaborative model that deepens community, public school, and university partnerships designed to support science educators and their students and (2) explore the current academic and social impact of the Teacher-to-Teacher professional development program as a possible solution for the development and implementation of high-quality, place-based, NGSS-aligned learning experiences for and with students. This presentation will focus on the components used to develop the partnership model with community partners, K-12 teachers and administrators, and university professors. Finally, the Teacher-to-Teacher (T2T) model and its new iteration, the Teacher-Plus-Community Partners T+CP Model will be shared for future development of place-based science learning experiences. 
                        more » 
                        « less   
                    
                            
                            Co-Constructing and Sharing STEAM Knowledge through a Culturally Relevant Literacy-Based Early Childhood School-University Partnership
                        
                    
    
            Through school-university partnerships that situate learning within culturally relevant educational experiences, faculty, preservice teachers, and school-based educators are able to co-construct and share scientific knowledge. This knowledge consists of pedagogical content knowledge and funds of knowledge that include both knowledge and skills developed in cultural context that have evolved historically. In early childhood education, culturally relevant Science, Technology, Engineering, Arts, and Mathematics (STEAM) learning experiences are particularly important for young children's cognitive and social emotional development. This paper describes how intentional co-planning and collaboration to celebrate the US Read across America Day provided over 100 preschool children in eight classrooms with access to STEAM lessons virtually led by university preservice teachers in partnership with educators in the school. These activities engaged children in exploring art, computer science, physical science, engineering, and mathematics within the context of a culturally relevant version of the fairy tale Goldilocks and the Three Bears. Lessons implemented as part of school-university partnerships support Black and Latinx children's development of a sense of belonging in STEAM. Further, these experiences enhance teacher candidates' abilities to engage in culturally responsive STEAM teaching while receiving ongoing guidance and education from university faculty and school-based educators. Teacher education programs within higher education institutions should embrace school- university partnerships as contexts for the development of shared scientific knowledge and discourse since the benefits are twofold. First, children and teachers gain access to, and engage with, innovative STEAM experiences. Second, preservice teachers learn culturally relevant research-based instructional strategies through university coursework situated in authentic learning experiences; thus, their learning as teacher candidates is enhanced through planning, implementation, evaluation, and critical reflection. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2031394
- PAR ID:
- 10311977
- Date Published:
- Journal Name:
- Proceedings of the 2nd International Conference of the Journal Scuola Democratica
- Volume:
- 2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In a time when the United States is faced with continued racism and social unrest, it is more important than ever to prepare teachers who can advocate for marginalized students and social justice. This article describes the evolution of a seminar course called Theory and Reality: Practicum in Math and Science Teaching in High-Need Schools within the context of a predominately White teacher-preparation program. Guided by scholars of culturally relevant education and our professional and personal journeys as equity-focused teacher educators, we sought to design experiences to prepare preservice science and mathematics teachers to teach in high-poverty or underfunded schools. Specifically, the course was intended to (1) develop an understanding of pedagogical practices and educational strategies for successful teaching in a high-need school setting, especially in mathematics and science classrooms, and (2) cultivate both cultural self-awareness and cross-cultural consciousness in one’s ability to adapt to the high-need environment in a culturally responsive way. We describe the evolutionary rationale for changes made to course assignments and readings to promote cultural competence and early advocacy skills for teacher candidates interested in teaching in schools facing poverty. We highlight preservice teachers’ reflections that evidence their early conceptualizations of teaching in a high-need school context and how assignments promoted their relationship-building and advocacy skills for marginalized students.more » « less
- 
            Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)In this presentation, we will analyze and explain how three university faculty designed an intensive 12-day science methods course for preservice teachers to learn about science. The course, which is part of the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation, is focused on differentiating science and engineering content for emerging bilingual students (English/Spanish). After the course, teacher educators then implement this content with 4th - 8th grade students in the STEM Summer Scholars Institute, a 15-day academic enrichment program for emerging bilingual students. Not only will we explain how this differentiation toolkit is helping preservice teachers to build more inclusive and supporting environments in science in their current practice, but we also explore how other content, such asco-teaching models and science and engineering methodologies, shaped their teaching skills. The differentiation toolkit consists of the use of technology, hands-on materials, and multimodalities, and we examine how the preservice teacher-students interactions are structured following a culturally and linguistically relevant methodology for the classroom. Project faculty and teacher educators will discuss our experiences in implementing these methodologies (science and culturally and linguistically relevant practices) including areas of growth.more » « less
- 
            Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences.more » « less
- 
            Connecting university methods courses and teacher daily practice is a persistent challenge in teacher education. Another challenge is preparing teachers to enact equitable instruction that meets the needs of an increasingly diverse student population. We take on these challenges by supporting practicing elementary teachers to design case-based teaching scenarios for preservice teachers that engage them with enacting culturally grounded mathematics and science instruction. We draw on data from workshops with teachers to illustrate how the design process elevates teachers’ voices while also supporting their own learning. Workshop features that proved powerful for teachers included collaborating with colleagues, offering and receiving peer feedback, and working with a table describing key features of culturally grounded pedagogy in mathematics and science.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    