skip to main content


Title: Co-Constructing and Sharing STEAM Knowledge through a Culturally Relevant Literacy-Based Early Childhood School-University Partnership
Through school-university partnerships that situate learning within culturally relevant educational experiences, faculty, preservice teachers, and school-based educators are able to co-construct and share scientific knowledge. This knowledge consists of pedagogical content knowledge and funds of knowledge that include both knowledge and skills developed in cultural context that have evolved historically. In early childhood education, culturally relevant Science, Technology, Engineering, Arts, and Mathematics (STEAM) learning experiences are particularly important for young children's cognitive and social emotional development. This paper describes how intentional co-planning and collaboration to celebrate the US Read across America Day provided over 100 preschool children in eight classrooms with access to STEAM lessons virtually led by university preservice teachers in partnership with educators in the school. These activities engaged children in exploring art, computer science, physical science, engineering, and mathematics within the context of a culturally relevant version of the fairy tale Goldilocks and the Three Bears. Lessons implemented as part of school-university partnerships support Black and Latinx children's development of a sense of belonging in STEAM. Further, these experiences enhance teacher candidates' abilities to engage in culturally responsive STEAM teaching while receiving ongoing guidance and education from university faculty and school-based educators. Teacher education programs within higher education institutions should embrace school- university partnerships as contexts for the development of shared scientific knowledge and discourse since the benefits are twofold. First, children and teachers gain access to, and engage with, innovative STEAM experiences. Second, preservice teachers learn culturally relevant research-based instructional strategies through university coursework situated in authentic learning experiences; thus, their learning as teacher candidates is enhanced through planning, implementation, evaluation, and critical reflection.  more » « less
Award ID(s):
2031394
NSF-PAR ID:
10311977
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2nd International Conference of the Journal Scuola Democratica
Volume:
2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a time when the United States is faced with continued racism and social unrest, it is more important than ever to prepare teachers who can advocate for marginalized students and social justice. This article describes the evolution of a seminar course called Theory and Reality: Practicum in Math and Science Teaching in High-Need Schools within the context of a predominately White teacher-preparation program. Guided by scholars of culturally relevant education and our professional and personal journeys as equity-focused teacher educators, we sought to design experiences to prepare preservice science and mathematics teachers to teach in high-poverty or underfunded schools. Specifically, the course was intended to (1) develop an understanding of pedagogical practices and educational strategies for successful teaching in a high-need school setting, especially in mathematics and science classrooms, and (2) cultivate both cultural self-awareness and cross-cultural consciousness in one’s ability to adapt to the high-need environment in a culturally responsive way. We describe the evolutionary rationale for changes made to course assignments and readings to promote cultural competence and early advocacy skills for teacher candidates interested in teaching in schools facing poverty. We highlight preservice teachers’ reflections that evidence their early conceptualizations of teaching in a high-need school context and how assignments promoted their relationship-building and advocacy skills for marginalized students. 
    more » « less
  2. Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences. 
    more » « less
  3. Smith, W. M. (Ed.)
    The NebraskaMATH Omaha Noyce Partnership Scholarship awards scholarships funded by the National Science Foundation (NSF) to undergraduate students interested in mathematics education at the University of Nebraska at Omaha (UNO). Scholars, who are dual mathematics and secondary education majors, are engaged and supported by Noyce faculty to not only excel in their college coursework and career preparation, but also to serve the university and community through teaching assistantships and STEM community outreach. The main goal of this program is to strengthen and expand the pipeline for preparing high-quality teachers of mathematics to better meet the responsibilities and demands of local school districts, particularly those serving students with high-need. Cross-campus collaborations between the departments of teacher education and mathematics co-constructed the Noyce infrastructure to emphasize and share the development of future, high-quality secondary mathematics teachers (Mathematics Teacher Education Partnership, 2014). This paper describes our program’s unique design and implementation features aimed to empower, engage, and extend the talents of our undergraduate students. We share lessons learned and recommendations from faculty and participants regarding decisions and facets of the program considered to be most influential in STEM teacher and leadership development. 
    more » « less
  4. Abstract

    Learning to teach within and across the settings of teacher education coursework and field experience in local schools is subject to the “two‐worlds pitfall,” where practices, norms, expectations, tools, and other aspects of teaching can be jarringly different. This remains an ever‐present dilemma for preservice teachers, their teacher educators, and their school‐based mentors. This collective case study follows two cohorts of secondary science teacher candidates (22 in total) through their field experiences in local schools to understand how they reorganized, repurposed, and retooled practice as they worked on noticing and responding to students using ambitious science teaching principles and practices. Analysis highlights how instructional experiences in K–12 classrooms and relationships with mentors afforded and constrained preservice teachers’ efforts to recontextualize ambitious science teaching practices in the status quo science teaching contexts of local schools. Recommendations for increasing permeability between the two worlds of teacher preparation are included.

     
    more » « less
  5. null (Ed.)
    Though elementary educators recognize the importance of integrating engineering in their classrooms, many feel challenged and unprepared to teach engineering content. The absence of effective engineering instruction in teacher preparation programs leaves future educators unprepared for this challenge. Ed+gineering is an NSF-funded partnership between education and engineering aimed at increasing preservice teacher (PST) preparation, confidence, and intention to integrate engineering into their teaching. Ed+gineering partners education and engineering students in multidisciplinary teams within the context of their respective university courses. As part of their coursework, the teams plan and deliver culturally responsive engineering lessons to elementary school students under the guidance of one engineering and one education faculty. This paper investigates the impact of Ed+gineering on PSTs’ knowledge of engineering practices, engineering pedagogical knowledge, self-efficacy to integrate engineering, and beliefs about engineering integration. The impact of Ed+gineering on participating PSTs was assessed using three collaborations involving students in engineering and education during Fall 2019 and Spring 2020. Preliminary results suggest that the Ed+gineering partnership positively impacted engineering-pedagogical knowledge, knowledge of engineering practices, and self efficacy for integrating engineering. The specific magnitude of the impact and its implications are discussed. 
    more » « less