skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Role of Asymptomatic Carriers in Epidemic Spread Processes
We present an epidemiological compartment model, SAIR(S), that explicitly captures the dynamics of asymptomatic infected individuals in an epidemic spread process. We first present a group model and then discuss networked versions. We provide an investigation of equilibria and stability properties for these models, and present simulation results illustrating the effects of asymptomatic-infected individuals on the spread of the disease. We also discuss local isolation effects on the epidemic dynamics in terms of the networked models. Finally, we provide initial parameter estimation results based on simple least-squares approaches and local test-site data  more » « less
Award ID(s):
2032321
PAR ID:
10312118
Author(s) / Creator(s):
;
Date Published:
Journal Name:
American Control Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore the effects of cross-diffusion dynamics in epidemiological models. Using reaction–diffusion models of infectious disease, we explicitly consider situations where an individual in a category will move according to the concentration of individuals in other categories. Namely, we model susceptible individuals moving away from infected and infectious individuals. Here, we show that including these cross-diffusion dynamics results in a delay in the onset of an epidemic and an increase in the total number of infectious individuals. This representation provides more realistic spatiotemporal dynamics of the disease classes in an Erlang SEIR model and allows us to study how spatial mobility, due to social behavior, can affect the spread of an epidemic. We found that tailored control measures, such as targeted testing, contact tracing, and isolation of infected individuals, can be more effective in mitigating the spread of infectious diseases while minimizing the negative impact on society and the economy. 
    more » « less
  2. Abstract Individuals’ socio-demographic and economic characteristics crucially shape the spread of an epidemic by largely determining the exposure level to the virus and the severity of the disease for those who got infected. While the complex interplay between individual characteristics and epidemic dynamics is widely recognised, traditional mathematical models often overlook these factors. In this study, we examine two important aspects of human behaviour relevant to epidemics: contact patterns and vaccination uptake. Using data collected during the COVID-19 pandemic in Hungary, we first identify the dimensions along which individuals exhibit the greatest variation in their contact patterns and vaccination uptake. We find that generally higher socio-economic groups of the population have a higher number of contacts and a higher vaccination uptake with respect to disadvantaged groups. Subsequently, we propose a data-driven epidemiological model that incorporates these behavioural differences. Finally, we apply our model to analyse the fourth wave of COVID-19 in Hungary, providing valuable insights into real-world scenarios. By bridging the gap between individual characteristics and epidemic spread, our research contributes to a more comprehensive understanding of disease dynamics and informs effective public health strategies. 
    more » « less
  3. Epidemic models are used across biological and social sciences, engineering, and computer science, and have had important impact in the study of the dynamics of human disease and computer viruses, but also trends rumors, viral videos, and most recently the spread of fake news on social networks. In this paper, we focus on epidemics propagating on a graph, as introduced by the seminal paper [5]. In particular, we consider so-called SI models (see below for a precise definition) where an infected node can only propagate the infection to its non-infected neighbor, as opposed to the fully mixed models considered in the early literature. This graph-based approach provides a more realistic model, in which the spread of the epidemic is determined by the connectivity of the graph, and accordingly some nodes may play a larger role than others in the spread of the infection. 
    more » « less
  4. Borri, Alessandro (Ed.)
    Ever since the outbreak of the COVID-19 epidemic, various public health control strategies have been proposed and tested against the coronavirus SARS-CoV-2. We study three specific COVID-19 epidemic control models: the susceptible, exposed, infectious, recovered (SEIR) model with vaccination control; the SEIR model with shield immunity control; and the susceptible, un-quarantined infected, quarantined infected, confirmed infected (SUQC) model with quarantine control. We express the control requirement in metric temporal logic (MTL) formulas (a type of formal specification languages) which can specify the expected control outcomes such as “ the deaths from the infection should never exceed one thousand per day within the next three months ” or “ the population immune from the disease should eventually exceed 200 thousand within the next 100 to 120 days ”. We then develop methods for synthesizing control strategies with MTL specifications. To the best of our knowledge, this is the first paper to systematically synthesize control strategies based on the COVID-19 epidemic models with formal specifications. We provide simulation results in three different case studies: vaccination control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; shield immunity control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; and quarantine control for the COVID-19 epidemic with model parameters estimated from data in Wuhan, China. The results show that the proposed synthesis approach can generate control inputs such that the time-varying numbers of individuals in each category (e.g., infectious, immune) satisfy the MTL specifications. The results also show that early intervention is essential in mitigating the spread of COVID-19, and more control effort is needed for more stringent MTL specifications. For example, based on the model in Lombardy, Italy, achieving less than 100 deaths per day and 10000 total deaths within 100 days requires 441.7% more vaccination control effort than achieving less than 1000 deaths per day and 50000 total deaths within 100 days. 
    more » « less
  5. In this paper, we use modified versions of the SIAR model for epidemics to propose two ways of understanding and quantifying the effect of non-compliance to non-pharmaceutical intervention measures on the spread of an infectious disease. The SIAR model distinguishes between symptomatic infected (I) and asymptomatic infected (A) populations. One modification, which is simpler, assumes a known proportion of the population does not comply with government mandates such as quarantining and social-distancing. In a more sophisticated approach, the modified model treats non-compliant behavior as a social contagion. We theoretically explore different scenarios such as the occurrence of multiple waves of infections. Local and asymptotic analyses for both models are also provided. 
    more » « less