skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alternative SIAR models for infectious diseases and applications in the study of non-compliance
In this paper, we use modified versions of the SIAR model for epidemics to propose two ways of understanding and quantifying the effect of non-compliance to non-pharmaceutical intervention measures on the spread of an infectious disease. The SIAR model distinguishes between symptomatic infected (I) and asymptomatic infected (A) populations. One modification, which is simpler, assumes a known proportion of the population does not comply with government mandates such as quarantining and social-distancing. In a more sophisticated approach, the modified model treats non-compliant behavior as a social contagion. We theoretically explore different scenarios such as the occurrence of multiple waves of infections. Local and asymptotic analyses for both models are also provided.  more » « less
Award ID(s):
2027438 1737770
PAR ID:
10423700
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
32
Issue:
10
ISSN:
0218-2025
Page Range / eLocation ID:
1987 to 2015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only. Methods We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics). Results This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high. Conclusions To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation. 
    more » « less
  2. Epidemic models are used across biological and social sciences, engineering, and computer science, and have had important impact in the study of the dynamics of human disease and computer viruses, but also trends rumors, viral videos, and most recently the spread of fake news on social networks. In this paper, we focus on epidemics propagating on a graph, as introduced by the seminal paper [5]. In particular, we consider so-called SI models (see below for a precise definition) where an infected node can only propagate the infection to its non-infected neighbor, as opposed to the fully mixed models considered in the early literature. This graph-based approach provides a more realistic model, in which the spread of the epidemic is determined by the connectivity of the graph, and accordingly some nodes may play a larger role than others in the spread of the infection. 
    more » « less
  3. null (Ed.)
    Understanding the dynamics of the spread of COVID-19 between connected communities is fundamental in planning appropriate mitigation measures. To that end, we propose and analyze a novel metapopulation network model, particularly suitable for modeling commuter traffic patterns, that takes into account the connectivity between a heterogeneous set of communities, each with its own infection dynamics. In the novel metapopulation model that we propose here, transport schemes developed in optimal transport theory provide an efficient and easily implementable way of describing the temporary population redistribution due to traffic, such as the daily commuter traffic between work and residence. Locally, infection dynamics in individual communities are described in terms of a susceptible-exposed-infected-recovered (SEIR) compartment model, modified to account for the specific features of COVID-19, most notably its spread by asymptomatic and presymptomatic infected individuals. The mathematical foundation of our metapopulation network model is akin to a transport scheme between two population distributions, namely the residential distribution and the workplace distribution, whose interface can be inferred from commuter mobility data made available by the US Census Bureau. We use the proposed metapopulation model to test the dynamics of the spread of COVID-19 on two networks, a smaller one comprising 7 counties in the Greater Cleveland area in Ohio, and a larger one consisting of 74 counties in the Pittsburgh–Cleveland–Detroit corridor following the Lake Erie’s American coastline. The model simulations indicate that densely populated regions effectively act as amplifiers of the infection for the surrounding, less densely populated areas, in agreement with the pattern of infections observed in the course of the COVID-19 pandemic. Computed examples show that the model can be used also to test different mitigation strategies, including one based on state-level travel restrictions, another on county level triggered social distancing, as well as a combination of the two. 
    more » « less
  4. Non-pharmaceutical interventions (NPI) have been proven vital in the fight against the COVID-19 pandemic before the massive rollout of vaccinations. Considering the inherent epistemic-aleatoric uncertainty of parameters, accurate simulation and modeling of the interplay between the NPI and contagion dynamics are critical to the optimal design of intervention policies. We propose a modified SIRD-MPC model that combines a modified stochastic Susceptible-Infected-Recovered-Deceased (SIRD) compartment model with mixed epistemic-aleatoric parameters and Model Predictive Control (MPC), to develop robust NPI control policies to contain the infection of the COVID-19 pandemic with minimum economic impact. The simulation result indicates that our proposed model can significantly decrease the infection rate compared to the practical results under the same initial conditions. 
    more » « less
  5. Some endosymbionts living within a host must modulate their hosts’ immune systems in order to infect and persist. We studied the effect of a bacterial endosymbiont on a facultatively multicellular social amoeba host. Aggregates of the amoeba Dictyostelium discoideum contain a subpopulation of sentinel cells that function akin to the immune systems of more conventional multicellular organisms. Sentinel cells sequester and discard toxins from D. discoideum aggregates and may play a central role in defence against pathogens. We measured the number and functionality of sentinel cells in aggregates of D. discoideum infected by bacterial endosymbionts in the genus Paraburkholderia. Infected D. discoideum produced fewer and less functional sentinel cells, suggesting that Paraburkholderia may interfere with its host’s immune system. Despite impaired sentinel cells, however, infected D. discoideum were less sensitive to ethidium bromide toxicity, suggesting that Paraburkholderia may also have a protective effect on its host. By contrast, D. discoideum infected by Paraburkholderia did not show differences in their sensitivity to two non-symbiotic pathogens. Our results expand previous work on yet another aspect of the complicated relationship between D. discoideum and Paraburkholderia, which has considerable potential as a model for the study of symbiosis. 
    more » « less