skip to main content


Title: X-composer: enabling cross-environments in-situ workflows between HPC and cloud
As large-scale scientific simulations and big data analyses become more popular, it is increasingly more expensive to store huge amounts of raw simulation results to perform post-analysis. To minimize the expensive data I/O, “in-situ” analysis is a promising approach, where data analysis applications analyze the simulation generated data on the fly without storing it first. However, it is challenging to organize, transform, and transport data at scales between two semantically different ecosystems due to the distinct software and hardware difference. To tackle these challenges, we design and implement the X-Composer framework. X-Composer connects cross-ecosystem applications to form an “in-situ” scientific workflow, and provides a unified approach and recipe for supporting such hybrid in-situ workflows on distributed heterogeneous resources. X-Composer reorganizes simulation data as continuous data streams and feeds them seamlessly into the Cloud-based stream processing services to minimize I/O overheads. For evaluation, we use X-Composer to set up and execute a cross-ecosystem workflow, which consists of a parallel Computational Fluid Dynamics simulation running on HPC, and a distributed Dynamic Mode Decomposition analysis application running on Cloud. Our experimental results show that X-Composer can seamlessly couple HPC and Big Data jobs in their own native environments, achieve good scalability, and provide high-fidelity analytics for ongoing simulations in real-time.  more » « less
Award ID(s):
1835817
PAR ID:
10312425
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Platform for Advanced Scientific Computing Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientific workflows drive most modern large-scale science breakthroughs by allowing scientists to define their computations as a set of jobs executed in a given order based on their data dependencies. Workflow management systems (WMSs) have become key to automating scientific workflows-executing computational jobs and orchestrating data transfers between those jobs running on complex high-performance computing (HPC) platforms. Traditionally, WMSs use files to communicate between jobs: a job writes out files that are read by other jobs. However, HPC machines face a growing gap between their storage and compute capabilities. To address that concern, the scientific community has adopted a new approach called in situ, which bypasses costly parallel filesystem I/O operations with faster in-memory or in-network communications. When using in situ approaches, communication and computations can be interleaved. In this work, we leverage the Decaf in situ dataflow framework to accelerate task-based scientific workflows managed by the Pegasus WMS, by replacing file communications with faster MPI messaging. We propose a new execution engine that uses Decaf to manage communications within a sub-workflow (i.e., set of jobs) to optimize inter-job communications. We consider two workflows in this study: (i) a synthetic workflow that benchmarks and compares file- and MPI-based communication; and (ii) a realistic bioinformatics workflow that computes mu-tational overlaps in the human genome. Experiments show that in situ communication can improve the bioinformatics workflow execution time by 22% to 30% compared with file communication. Our results motivate further opportunities and challenges for bridging traditional WMSs with in situ frameworks. 
    more » « less
  2. Scientific research and development campaigns are materialized by workflows of applications executing on high-performance computing (HPC) systems. These applications con-sist of tasks that can have inter- or intra-application flows of data to achieve the research goals successfully. These dataflows create dependencies among the tasks and cause resource con-tention on shared storage systems, thus limiting the aggregated I/O bandwidth achieved by the workflow. However, these I/O performance issues are often solved by tedious and manual efforts that demand holistic knowledge about the data dependencies in the workflow and the information about the infrastructure being utilized. Taking this into consideration, we design DFMan, a graph-based dataflow management and optimization framework for maximizing I/O bandwidth by leveraging the powerful storage stack on HPC systems to manage data sharing optimally among the tasks in the workflows. In particular, we devise a graph-based optimization algorithm that can leverage an intuitive graph representation of dataflow- and system-related information, and automatically carry out co-scheduling of task and data placement. According to our experiments, DFMan optimizes a wide variety of scientific workflows such as Hurricane 3D on Cloud Model 1 (CM1), Montage Carina Nebula (NGC3372), and an emulated dataflow kernel of the Multiscale Machine-learned Modeling Infrastructure (MuMMI I/O) on the Lassen supercomputer, and improves their aggregated I/O bandwidth by up to 5.42 x, 2.12 x and 1.29 x, respectively, compared to the baseline bandwidth. 
    more » « less
  3. —Exascale computing enables unprecedented, detailed and coupled scientific simulations which generate data on the order of tens of petabytes. Due to large data volumes, lossy compressors become indispensable as they enable better compression ratios and runtime performance than lossless compressors. Moreover, as (high-performance computing) HPC systems grow larger, they draw power on the scale of tens of megawatts. Data motion is expensive in time and energy. Therefore, optimizing compressor and data I/O power usage is an important step in reducing energy consumption to meet sustainable computing goals and stay within limited power budgets. In this paper, we explore efficient power consumption gains for the SZ and ZFP lossy compressors and data writing on a cloud HPC system while varying the CPU frequency, scientific data sets, and system architecture. Using this power consumption data, we construct a power model for lossy compression and present a tuning methodology that reduces energy overhead of lossy compressors and data writing on HPC systems by 14.3% on average. We apply our model and find 6.5 kJs, or 13%, of savings on average for 512GB I/O. Therefore, utilizing our model results in more energy efficient lossy data compression and I/O. 
    more » « less
  4. The imbalanced I/O load on large parallel file systems affects the parallel I/O performance of high-performance computing (HPC) applications. One of the main reasons for I/O imbalances is the lack of a global view of system-wide resource consumption. While approaches to address the problem already exist, the diversity of HPC workloads combined with different file striping patterns prevents widespread adoption of these approaches. In addition, load-balancing techniques should be transparent to client applications. To address these issues, we proposeTarazu, an end-to-end control plane where clients transparently and adaptively write to a set of selected I/O servers to achieve balanced data placement. Our control plane leverages real-time load statistics for global data placement on distributed storage servers, while our design model employs trace-based optimization techniques to minimize latency for I/O load requests between clients and servers and to handle multiple striping patterns in files. We evaluate our proposed system on an experimental cluster for two common use cases: the synthetic I/O benchmark IOR and the scientific application I/O kernel HACC-I/O. We also use a discrete-time simulator with real HPC application traces from emerging workloads running on the Summit supercomputer to validate the effectiveness and scalability ofTarazuin large-scale storage environments. The results show improvements in load balancing and read performance of up to 33% and 43%, respectively, compared to the state-of-the-art.

     
    more » « less
  5. We present an interactive HPC framework for coupled fire and weather simulations. The system is suitable for urgent simulations and forecast of wildfire propagation and smoke. It does not require expert knowledge to set up and run the forecasts. The core of the system is a coupled weather, wildland fire, fuel moisture, and smoke model, running in an interactive workflow and data management system. The system automates job setup, data acquisition, preprocessing, and simulation on an HPC cluster. It provides animated visualization of the results on a dedicated mapping portal in the cloud, and as GIS files or Google Earth KML files. The system also serves as an extensible framework for further research, including data assimilation and applications of machine learning to initialize the simulations from satellite data. Index Terms—WRF-SFIRE, coupled atmosphere-fire model, MODIS, VIIRS, satellite data, fire arrival time, data assimilation, machine learning 
    more » « less