skip to main content


Title: Applying Phenomenography to Develop a Comprehensive Understanding of Ethics in Engineering Practice
This Work-in-Progress Research paper describes (1) the contemporary research space on ethics education in engineering; (2) our long-term research plan; (3) the theoretical underpinnings of Phase 1 of our research plan (phenomenography); and (4) the design and developmental process of a phenomenographic interview protocol to explore engineers’ experiences with ethics. Ethical behavior is a complex phenomenon that is complicated by the institutional and cultural contexts in which it occurs. Engineers also have varied roles and often work in a myriad of capacities that influence their experiences with and understanding of ethics in practice. We are using phenomenography, a qualitative research approach, to explore and categorize the ways engineers experience and understand ethical engineering practice. Specifically, phenomenography will allow us to systematically investigate the range and complexity of ways that engineers experience ethics in professional practice in the health products industry. Phenomenographic data will be obtained through a specialized type of semi-structured interview. Here we introduce the design of our interview protocol and its four sections: Background, Experience, Conceptual, and Summative. We also describe our iterative process for framing questions throughout each section.  more » « less
Award ID(s):
1737303
NSF-PAR ID:
10312453
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in education
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering education researchers have identified a lack of alignment between the complexities of professional engineering contexts and the ways that we train and evaluate the ethical abilities and dispositions of engineers preparing for professional practice. The challenges that engineers face as practitioners are multifaceted, wicked problems situated in unique and varied disciplinary and industry contexts. Understanding the variations in ways of experiencing ethics by practicing engineers in these complex professional contexts will support a better alignment between engineering ethics instruction and what students might experience in professional practice. While there is a need for richer and more contextually-specific ethics training for many areas, our initial focus is the healthcare products industry. Thus, our NSF-funded CCE STEM project will enable us to analyze the alignment of relationships among frameworks for ethics education in engineering and the reality of engineering practice within the health products industry. As a first phase, the project has focused on understanding the different ways in which practicing engineers experience ethical issues in the health products industry using phenomenography, an empirical research methodology for investigating qualitatively different ways people experience a phenomenon. In the second phase, we have analyzed critical incidents that potentially cause the variation in experiencing ethics in practice. The findings of these studies are anticipated to serve as a guidepost for aligning educational strategies and developing effective training for future ethical practitioners. In our paper, we present an overview of the study (background and methods), progress to date, and how we expect the results to inform engineering ethics education and industry ethics training. 
    more » « less
  2. In an era of ubiquitous digital interfaces and systems, technology and design practitioners must address a range of ethical dilemmas surrounding the use of persuasive design techniques and how to balance shareholder and end-user needs [2], [5]. Similarly, the increasing user concerns about unethical products and services [1] is paralleling a rise in regulatory interests in enforcing ethical design and engineering practices among technology practitioners, surfacing a need for further support. Although various scholars have developed frameworks and methods to support practitioners in navigating these challenging contexts [3], [4], often, there is a lack of resonance between these generic methods and the situated ethical complexities facing the practitioner in their everyday work. In this project, we designed and implemented a three-hour cocreation workshop with designers, engineers, and technologists to support them to develop bespoke ethics-focused action plans that are resonant with the ethical challenges they face in their everyday practice. In developing the co-creation session, we sought to answer the following questions to empower practitioners: • How can we support practitioners in developing action plans to address ethical dilemmas in their everyday work? and • How can we empower designers to design more responsibly? Building on these questions as a guide, we employed Miro, a digital whiteboard platform, to develop the co-creation experience. The final c o-creation e xperience w as d esigned w ith the visual metaphor of a “house” with four floors and multiple rooms that allowed participants to complete different tasks per room, all aimed towards the overall goal of developing participants' own personalized action plan in an interactive and collaborative way. We invited participants to share their stories and ethical dilemmas to support their creation and iteration of a personal action plan that they could later use in their everyday work context. Across the six co-creation sessions we conducted, participants (n=26) gained a better understanding of the drivers for ethical action in the context of their everyday work and developed an action plan through the co-creation workshop that enabled them to constructively engage with ethical challenges in their professional context. At the end of the session, participants were provided the action plans they created to allow them to use it in their practice. Furthermore, the co-design workshops were designed such that practitioners could take them away (the house and session guide) and run them independently at their organization or another context to support their objectives. We describe the building and the activities conducted in each floor below and will provide a pictorial representation of the house with the different floors, rooms, and activities on the poster presentation. a) First floor-Welcome, Introduction, Reflection: The first floor of the virtual house was designed to allow participants to introduce themselves and to reflect on and discuss the ethical concerns they wished to resolve during the session. b) Second floor-Shopping for ethics-focused methods: The second floor of the virtual house was designed as a “shopping” space where participants selected from range of ethicsfocused building blocks that they wish to potentially adapt or incorporate into their own action plan. They were also allowed to introduce their own methods or tools. c) Third floor-DIY Workspace: The third floor was designed as a DIY workspace to allow the participants to work in small groups to develop their own bespoke action plan based on building blocks they have gathered from their shopping trip and by using any other components they wish. The goal here was to support participants in developing methods and action plans that were resonant with their situated ethical complexities. d) Fourth floor-Gallery Space: The fourth floor was designed as a gallery to allow participants to share and discuss their action plans with other participants and to identify how their action plans could impact their future practice or educational experiences. Participants were also provided an opportunity at this stage to reflect on their experience participating in the session and provide feedback on opportunities for future improvement. 
    more » « less
  3. In 2017, the report Undergraduate Research Experiences for STEM Students from the National Academy of Science and Engineering and Medicine (NASEM) invited research programs to develop experiences that extend from disciplinary knowledge and skills education. This call to action asks to include social responsibility learning goals in ethical development, cultural issues in research, and the promotion of inclusive learning environments. Moreover, the Accreditation Board for Engineering and Technology (ABET), the National Academy of Engineering (NAE), and the National Science Foundation (NSF) all agree that social responsibility is a significant component of an engineer’s professional formation and must be a guiding force in their education. Social Responsibility involves the ethical obligation engineers have to society and the environment, including responsible conduct research (RCR), ethical decision-making, human safety, sustainability, pro bono work, social justice, and diversity. For this work, we explored the views of Social Responsibility in engineering students that could provide insight into developing formal and informal educational activities for future summer programs. In this exploratory multi-methods study, we investigated the following research question: What views of social responsibility are important for engineering students conducting scientific in an NSF Research Experiences for Undergraduates (REU)? The REU Site selected for this study was a college of engineering located at a major, public, comprehensive, land-grant research university. The Views of Social Responsibility of Scientists and Engineers (VSRoSE) was used to guide our research design. This validated instrument considers the following major social responsibility elements: 1) Consideration of societal consequences, 2) Protection of human welfare and safety, 3) Promotion of environmental sustainability, 4) Efforts to minimize risks, 5) Communication with the public, and 6) Service and Community engagement. Data collection was conducted at the end of their 10-week-long experience in Summer 2022 using Qualtrics. REU students were invited to complete an IRB-approved questionnaire, including collecting demographic data, the VSRoSE-validated survey, and open-ended questions. Open-ended questions were used to explore what experiences have influenced positive student views of social responsibility and provide rich information beyond the six elements of the VSRoSE instrument. The quantitative data from the VSRoSE is analyzed using SPSS. The qualitative data is analyzed by the research team using an inductive coding approach. In this coding process, the researchers derive codes from the data allowing the narrative or theory to emerge from the raw data itself, which is great for exploratory research. The results from this exploratory study will help to strategically initiate a formal and informal research education curriculum at the selected university. In addition, the results may serve as a way for REU administrators and faculty to create metrics of impact on their research activities regarding social responsibility. Finally, this work intends to provoke the ethics and research community to have a deeper conversation about the needs and strategies to educate this unique population of students. 
    more » « less
  4. This WIP paper describes a team approach to phenomenography on ethical engineering practice in the health products industry and its potential impact on research quality. Although qualitative researchers often conduct phenomenography collaboratively, most often a single individual leads the data collection and analysis; others primarily serve as critical reviewers. However, quality may be enhanced by involving collaborators as data analysts in “sustained cycles of scrutiny, debate and testing against the data” [1, p. 88], thus interweaving unique perspectives and insights throughout the analysis process. Nonetheless, collaborating in this intensive data analysis process also presents unique challenges. In this paper, we (1) describe the processes we are applying in an integrated team-based phenomenographic study, (2) identify how the team approach affects research quality, and (3) reflect on the challenges inherent to this process. We ground this reflective case study in the methodological literature on phenomenography. Our team strategies include multiple interviewers (and, when possible, two interviewers per inter-view), team communication through reflective memos, and integration of individual and team-based data analysis with peer critique of individual analyses. We compare our team approach with typical individual phenomenographic approaches, and we align our procedures with the five strategies of the Qualifying Qualitative Research Quality Framework, or Q3, designed by Walther, Sochacka, and Kellam [2]. In aligning strategies, we consider benefits and trade-offs. 
    more » « less
  5. null (Ed.)
    Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impacts of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views are influenced by the professional contexts in which these engineers work, including cultures and norms prevalent in different technical fields, organizations, and industry sectors. This NSF-supported Ethical and Responsible Research (ER2) study responds to these gaps in the literature by asking: RQ1) How do perceptions of ethics and social responsibility change in the transition from undergraduate engineering degree programs to the workplace (or graduate studies), and how are these perceptions shaped or influenced?, and RQ2) How do perceptions of ethics and social responsibility vary depending on a given individual’s engineering discipline/background and current professional setting? This paper gives an overview of the research project, describing in particular the longitudinal, mixed-methods study design which will involve collecting and analyzing data from a large sample of early career engineers. More specifically, we will present the proposed study contexts, timeline, target subject populations, and procedures for quantitative and qualitative data collection and analysis. We will also describe how this study leverages our prior project, thereby allowing unique longitudinal comparisons that span participants’ years as an engineering undergraduate student to their time as an early-career professional. Through this project, we aim to better understand how early career engineers’ perceptions of social and ethical responsibility are shaped by their prior experiences and current professional contexts. This paper will likely be of particular interest to scholars who teach or research engineering ethics, social responsibility, and professional practice. 
    more » « less