skip to main content


Search for: All records

Award ID contains: 1737303

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 23, 2024
  2. This Work-In-Progress paper seeks to continue the development of a framework with which to organize engineering ethics instructional approaches. We build on a recent coding framework that was developed as part of a systematic review of US post-secondary engineering ethics education literature. We apply and iterate on the framework by analyzing the 2016 National Academy of Engineering report, “Infusing Ethics into the Development of Engineers: Exemplary Education Activities and Programs,” which includes two-page synopses of 25 exemplary ethics programs. By applying the framework to these exemplars, we aim to identify prominent instructional approaches utilized across NAE exemplars and the extent to which NAE exemplars’ instructional approaches differ from those identified in the prior systematic review. This WIP has three preliminary outcomes: (1) identification of trends in instructional design approaches across the NAE exemplars, (2) comparison of the instructional design approaches of NAE exemplars with the prior systematic review, and (3) identification of next steps needed to develop a more holistic picture of how ethics is taught in US post-secondary engineering contexts. Example revisions to the coding framework involved combining community-engagement and real-world exposure, broadening micro-insertion to sociotechnical integration, and coding for explicit mentoring components of instruction. A future research step involves further specification of these codes to detail how the NAE exemplars applied select instructional approaches, including heuristics, ethical theories, and case studies, and real-world engagement. 
    more » « less
  3. While ethics education for chemical engineers has been emphasized, potential misalignment between the content of current ethics education and engineers’ actual practice has been pointed out. To help improve ethics education for chemical engineers, this research-to-practice paper presents six descriptions of engineers’ experiences related to ethics. The descriptions were constructed based on in-depth interviews with six chemical engineers who are currently working in the health products industry. As the descriptions provide evidence that ethics is pervasive in chemical engineers’ daily practices, we argue that chemical engineering curriculum should include instruction relative to professional ethics in actual practice. This paper concludes with a discussion on potential ways to utilize these descriptions in ethics education. 
    more » « less
  4. In light of both social and ABET expectations, engineering educators need to consider how to effectively infuse engineering ethics education into current engineering curricula. This article describes our initial efforts in that realm. We considered how to improve ethics education in engineering through establishing an academic-industry partnership, which facilitated conversation between engineering faculty members and practicing engineers in industry. We formed a College-level Ethics Advisory Council with representation from industry partners across all 13 engineering departments in Purdue’s College of Engineering. As the first official activity, we held an Ethics Advisory Council Workshop to define common goals and share mutual expectations for long-term relationships. This article shares some basic information about the academic-industry partnership and outputs from the Ethics Advisory Council Workshop. We also discuss lessons we learned from the initial work on the partnership, including limitations and other considerations important for potential adopters of such a strategy at their institution. This article can provide insights to engineering educators who are interested in adopting the academic-industry partnership approach to facilitate direct conversations between academia and industry, especially for better engineering ethics education. 
    more » « less
  5. Engineering education researchers have identified a lack of alignment between the complexities of professional engineering contexts and the ways that we train and evaluate the ethical abilities and dispositions of engineers preparing for professional practice. The challenges that engineers face as practitioners are multifaceted, wicked problems situated in unique and varied disciplinary and industry contexts. Understanding the variations in ways of experiencing ethics by practicing engineers in these complex professional contexts will support a better alignment between engineering ethics instruction and what students might experience in professional practice. While there is a need for richer and more contextually-specific ethics training for many areas, our initial focus is the healthcare products industry. Thus, our NSF-funded CCE STEM project will enable us to analyze the alignment of relationships among frameworks for ethics education in engineering and the reality of engineering practice within the health products industry. As a first phase, the project has focused on understanding the different ways in which practicing engineers experience ethical issues in the health products industry using phenomenography, an empirical research methodology for investigating qualitatively different ways people experience a phenomenon. In the second phase, we have analyzed critical incidents that potentially cause the variation in experiencing ethics in practice. The findings of these studies are anticipated to serve as a guidepost for aligning educational strategies and developing effective training for future ethical practitioners. In our paper, we present an overview of the study (background and methods), progress to date, and how we expect the results to inform engineering ethics education and industry ethics training. 
    more » « less
  6. This WIP paper describes a team approach to phenomenography on ethical engineering practice in the health products industry and its potential impact on research quality. Although qualitative researchers often conduct phenomenography collaboratively, most often a single individual leads the data collection and analysis; others primarily serve as critical reviewers. However, quality may be enhanced by involving collaborators as data analysts in “sustained cycles of scrutiny, debate and testing against the data” [1, p. 88], thus interweaving unique perspectives and insights throughout the analysis process. Nonetheless, collaborating in this intensive data analysis process also presents unique challenges. In this paper, we (1) describe the processes we are applying in an integrated team-based phenomenographic study, (2) identify how the team approach affects research quality, and (3) reflect on the challenges inherent to this process. We ground this reflective case study in the methodological literature on phenomenography. Our team strategies include multiple interviewers (and, when possible, two interviewers per inter-view), team communication through reflective memos, and integration of individual and team-based data analysis with peer critique of individual analyses. We compare our team approach with typical individual phenomenographic approaches, and we align our procedures with the five strategies of the Qualifying Qualitative Research Quality Framework, or Q3, designed by Walther, Sochacka, and Kellam [2]. In aligning strategies, we consider benefits and trade-offs. 
    more » « less
  7. This Work-in-Progress Research paper describes (1) the contemporary research space on ethics education in engineering; (2) our long-term research plan; (3) the theoretical underpinnings of Phase 1 of our research plan (phenomenography); and (4) the design and developmental process of a phenomenographic interview protocol to explore engineers’ experiences with ethics. Ethical behavior is a complex phenomenon that is complicated by the institutional and cultural contexts in which it occurs. Engineers also have varied roles and often work in a myriad of capacities that influence their experiences with and understanding of ethics in practice. We are using phenomenography, a qualitative research approach, to explore and categorize the ways engineers experience and understand ethical engineering practice. Specifically, phenomenography will allow us to systematically investigate the range and complexity of ways that engineers experience ethics in professional practice in the health products industry. Phenomenographic data will be obtained through a specialized type of semi-structured interview. Here we introduce the design of our interview protocol and its four sections: Background, Experience, Conceptual, and Summative. We also describe our iterative process for framing questions throughout each section. 
    more » « less