skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions
We investigate the structural, vibrational, and mechanical properties of jammed packings of deformable particles with shape degrees of freedom in three dimensions (3D). Each 3D deformable particle is modeled as a surface-triangulated polyhedron, with spherical vertices whose positions are determined by a shape-energy function with terms that constrain the particle surface area, volume, and curvature, and prevent interparticle overlap. We show that jammed packings of deformable particles without bending energy possess low-frequency, quartic vibrational modes, whose number decreases with increasing asphericity and matches the number of missing contacts relative to the isostatic value. In contrast, jammed packings of deformable particles with non-zero bending energy are isostatic in 3D, with no quartic modes. We find that the contributions to the eigenmodes of the dynamical matrix from the shape degrees of freedom are significant over the full range of frequency and shape parameters for particles with zero bending energy. We further show that the ensemble-averaged shear modulus 〈 G 〉 scales with pressure P as 〈 G 〉 ∼ P β , with β ≈ 0.75 for jammed packings of deformable particles with zero bending energy. In contrast, β ≈ 0.5 for packings of deformable particles with non-zero bending energy, which matches the value for jammed packings of soft, spherical particles with fixed shape. These studies underscore the importance of incorporating particle deformability and shape change when modeling the properties of jammed soft materials.  more » « less
Award ID(s):
2050777
PAR ID:
10312473
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
43
ISSN:
1744-683X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We perform computational studies of jammed particle packings in two dimensions undergoing isotropic compression using the well-characterized soft particle (SP) model and deformable particle (DP) model that we developed for bubbles and emulsions. In the SP model, circular particles are allowed to overlap, generating purely repulsive forces. In the DP model, particles minimize their perimeter, while deforming at the fixed area to avoid overlap during compression. We compare the structural and mechanical properties of jammed packings generated using the SP and DP models as a function of the packing fraction ρ, instead of the reduced number density φ. We show that near jamming onset the excess contact number Δz=z-z J and shear modulus G scale as Δρ 0.5 in the large system limit for both models, where Δρ=ρ-ρ J and z J ≈4 and ρ J ≈0.842 are the values at jamming onset. Δz and G for the SP and DP models begin to differ for ρ≥0.88. In this regime, Δz∼G can be described by a sum of two power-laws in Δρ, i.e. Δz∼G∼C 0 Δρ 0.5 +C 1 Δρ 1.0 to lowest order. We show that the ratio C 1 /C 0 is much larger for the DP model compared to that for the SP model. We also characterize the void space in jammed packings as a function of ρ. We find that the DP model can describe the formation of Plateau borders as ρ→1.0. We further show that the results for z and the shape factor A versus ρ for the DP model agree with recent experimental studies of foams and emulsions. 
    more » « less
  2. The introduction of transient degrees of freedom into a system can lead to novel material design and training protocols that guide a system into a desired metastable state. In this approach, some degrees of freedom, which were not initially included in the system dynamics, are first introduced and subsequently removed from the energy minimization process once the desired state is reached. Using this conceptual framework, we create stable jammed packings that exist in exceptionally deep energy minima marked by the absence of low-frequency quasilocalized modes; this added stability persists in the thermodynamic limit. The inclusion of particle radii as transient degrees of freedom leads to deeper and much more stable minima than does the inclusion of particle stiffnesses. This is because particle radii couple to the jamming transition, whereas stiffnesses do not. Thus, different choices for the added degrees of freedom can lead to very different training outcomes. 
    more » « less
  3. We generate and study dense positionally and/or orientationally disordered, including jammed, monodisperse packings of hard convex lens-shaped particles (lenses). Relatively dense isotropic fluid configurations of lenses of various aspect ratios are slowly compressed via a Monte Carlo method based procedure. Under this compression protocol, while ‘flat’ lenses form a nematic fluid phase (where particles are positionally disordered but orientationally ordered) and ‘globular’ lenses form a plastic solid phase (where particles are positionally ordered but orientationally disordered), ‘intermediate’, neither ‘flat’ nor ‘globular’, lenses do not form either mesophase. In general, a crystal solid phase (where particles are both positionally and orientationally ordered) does not spontaneously form during lengthy numerical simulation runs. In correspondence to those volume fractions at which a transition to the crystal solid phase would occur in equilibrium, a ‘downturn’ is observed in the inverse compressibility factor versus volume fraction curve beyond which this curve behaves essentially linearly. This allows us to estimate the volume fraction at jamming of the dense non-crystalline packings so generated. These packings are nematic for ‘flat’ lenses and plastic for ‘globular’ lenses, while they are robustly isotropic for ‘intermediate’ lenses, as confirmed by the calculation of the τ order metric, among other quantities. The structure factors S ( k ) of the corresponding jammed states tend to zero as the wavenumber k goes to zero, indicating they are effectively hyperuniform ( i.e. , their infinite-wavelength density fluctuations are anomalously suppressed). Among all possible lens shapes, ‘intermediate’ lenses with aspect ratio around 2/3 are special because they are those that reach the highest volume fractions at jamming while being positionally and orientationally disordered and these volume fractions are as high as those reached by nematic jammed states of ‘flat’ lenses and plastic jammed states of ‘globular’ lenses. All of their attributes, taken together, make such ‘intermediate’ lens packings particularly good glass-forming materials. 
    more » « less
  4. High-level rovibrational characterization of methanediol, the simplest geminal diol, using state-of-the-art, purely ab initio techniques unequivocally confirms previously reported gas phase preparation of this simplest geminal diol in its C 2 conformation. The F12-TZ-cCR and F12-DZ-cCR quartic force fields (QFFs) utilized in this work are among the largest coupled cluster-based anharmonic frequencies computed to date, and they match the experimental band origins of the spectral features in the 980–1100 cm −1 range to within 3 cm −1 , representing a significant improvement over previous studies. The simulated spectrum also matches the experimental spectrum in the strong Q branch feature and qualitative shape of the 980–1100 cm −1 region. Additionally, the full set of rotational constants, anharmonic vibrational frequencies, and quartic and sextic distortion constants are provided for both the lowest energy C 2 conformer as well as the slightly higher C s conformer. Several vibrational modes have intensities of 60 km mol −1 or higher, facilitating potential astronomical or atmospheric detection of methanediol or further identification in laboratory work especially now that gas phase synthesis of this molecule has been established. 
    more » « less
  5. Abstract Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle‐like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high‐power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response. 
    more » « less