skip to main content


Title: Trends and Opportunities in Tick-Borne Disease Geography
Abstract Tick-borne diseases are a growing problem in many parts of the world, and their surveillance and control touch on challenging issues in medical entomology, agricultural health, veterinary medicine, and biosecurity. Spatial approaches can be used to synthesize the data generated by integrative One Health surveillance systems, and help stakeholders, managers, and medical geographers understand the current and future distribution of risk. Here, we performed a systematic review of over 8,000 studies and identified a total of 303 scientific publications that map tick-borne diseases using data on vectors, pathogens, and hosts (including wildlife, livestock, and human cases). We find that the field is growing rapidly, with the major Ixodes-borne diseases (Lyme disease and tick-borne encephalitis in particular) giving way to monitoring efforts that encompass a broader range of threats. We find a tremendous diversity of methods used to map tick-borne disease, but also find major gaps: data on the enzootic cycle of tick-borne pathogens is severely underutilized, and mapping efforts are mostly limited to Europe and North America. We suggest that future work can readily apply available methods to track the distributions of tick-borne diseases in Africa and Asia, following a One Health approach that combines medical and veterinary surveillance for maximum impact.  more » « less
Award ID(s):
2021909
PAR ID:
10312499
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Rich, Stephen
Date Published:
Journal Name:
Journal of Medical Entomology
Volume:
58
Issue:
6
ISSN:
0022-2585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Tick-borne diseases are a growing public health threat in the United States. Despite the prevalence and rising burden of tick-borne diseases, there are major gaps in baseline knowledge and surveillance efforts for tick vectors, even among vector control districts and public health agencies. To address this issue, an online tick training course (OTTC) was developed through the Southeastern Center of Excellence in Vector-Borne Diseases (SECOEVBD) to provide a comprehensive knowledge base on ticks, tick-borne diseases, and their management.

    Methods

    The OTTC consisted of training modules covering topics including tick biology, tick identification, tick-borne diseases, and public health, personal tick safety, and tick surveillance. The course was largely promoted to vector control specialists and public health employees throughout the Southeastern US. We collected assessment and survey data on participants to gauge learning outcomes, perceptions of the utility of knowledge gained, and barriers and facilitators to applying the knowledge in the field.

    Results

    The OTTC was successful in increasing participants’ baseline knowledge across all course subject areas, with the average score on assessment increasing from 62.6% (pre-course) to 86.7% (post-course). More than half of participants (63.6%) indicated that they would definitely use information from the course in their work. Barriers to using information identified in the delayed assessment included lack of opportunities to apply skills (18.5%) and the need for additional specialized training beyond what the OTTC currently offers (18.5%), while the main facilitator (70.4%) for applying knowledge was having opportunities at work, such as an existing tick surveillance program.

    Conclusions

    Overall, this OTTC demonstrated capacity to improve knowledge in a necessary and underserved public health field, and more than half of participants use or plan to use the information in their work. The geographic reach of this online resource was much larger than simply for the Southeastern region for which it was designed, suggesting a much broader need for this resource. Understanding the utility and penetrance of training programs such as these is important for refining materials and assessing optimal targets for training.

     
    more » « less
  2. Abstract

    Neotropical birds are mostly parasitized by immature ticks and act as reservoir hosts of tick‐borne pathogens of medical and veterinary interest. Hence, determining the factors that enable ticks to encounter these highly mobile hosts and increase the potential for tick dispersal throughout migratory flyways are important for understanding tick‐borne disease transmission. We used 9682 individual birds from 572 species surveyed across Brazil and Bayesian models to disentangle possible avian host traits and climatic drivers of infestation probabilities, accounting for avian host phylogenetic relationships and spatiotemporal factors that may influence tick prevalence. Our models revealed that the probability of an individual bird being infested with tick larvae and nymphs was lower in partial migrant hosts and during the wet season. Notably, infestation probability increased in areas with a higher proportion of partial migrant birds. Other avian ecological traits known to influence tick prevalence (foraging habitat and body mass) and environmental condition that might constrain tick abundance (annual precipitation and minimum temperature) did not explain infestation probability. Our findings suggest that migratory flyways harbouring a greater abundance of migrant bird hosts also harbour a higher prevalence of immature ticks with potential to enhance the local transmission of tick‐borne pathogens and spread across regions.

     
    more » « less
  3. Cases of tick-borne diseases have been steadily increasing in the USA, owing in part to tick range expansion, land cover and associated host population changes, and habitat fragmentation. However, the relative importance of these and other potential drivers remain poorly understood within this complex disease system. Ticks are ectotherms with multi-host lifecycles, which makes them sensitive to changes in the physical environment and the ecological community. Here, we describe data collected by the National Ecological Observatory Network on tick abundance, diversity and pathogen infection. Ticks are collected using drag or flag methods multiple times in a growing season at 46 terrestrial sites across the USA. Ticks are identified and enumerated by a professional taxonomist, and a subset of nymphs are PCR-tested for various tick-borne pathogens. These data will enable multiscale analyses to better understand how drivers of tick dynamics and pathogen prevalence may shift with climate or land-use change. 
    more » « less
  4. This dataset lists 289 blacklegged tick population datasets from 6 studies that record abundance. These datasets were found by inputing keywords Ixodes Scapularis and tick in data repositories including Long Term Ecological Research data portal, National Ecological Observatory Network data portal, Google Datasets, Data Dryad, and Data One. The types of tick data recorded from these studies include density (number per square meter for example), proportion of ticks, count of ticks found on people. The locations of the datasets range from New York, New Jersey, Iowa, Massachusetts, and Connecticut, and range from 9 to 24 years in length. These datasets vary in that some record different life stages, geographic scope (county/town/plot), sampling technique (dragging/surveying), and different study length. The impact of these study factors on study results is analyzed in our research.

    Funding:

    RMC is supported by the National Institute of General Medical Sciences of the National Institutes of the Health under Award Number R25GM122672. CAB, JP, and KSW are supported by the Office of Advanced Cyberinfrastructure in the National Science Foundation under Award Number #1838807. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

    {"references": ["Ellison A. 2017. Incidence of Ticks and Tick Bites at Harvard Forest since 2006. Environmental Data Initiative. https://doi.org/10.6073/pasta/71f12a4ffb7658e71a010866d1805a84. Dataset accessed 6/25/2019", "New York State Department of Health Office of Public Health. 2019. Deer Tick Surveillance: Adults (Oct to Dec) excluding Powassan virus: Beginning 2008. https://health.data.ny.gov/Health/Deer-Tick-Surveillance-Nymphs-May-to-Sept-excludin/kibp-u2ip", "New York State Department of Health Office of Public Health. 2019. Access Nymph Deer Tick Collection Data by County (Excluding Powassan Virus). https://health.data.ny.gov/Health/Deer-Tick-Surveillance-Nymphs-May-to-Sept-excludin/kibp-u2ip", "Ostfeld RS, Levi T, Keesing F, Oggenfuss K, Canham CD (2018) Data from: Tick-borne disease risk in a forest food web. Dryad Digital Repository. https://doi.org/10.5061/dryad.d1c8046", "Oliver JD, Bennett SW, Beati L, Bartholomay LC (2017) Range Expansion and Increasing Borrelia burgdorferi Infection of the Tick Ixodes scapularis (Acari: Ixodidae) in Iowa, 1990\u20132013. Journal of Medical Entomology 54(6): 1727-1734. https://doi.org/10.1093/jme/tjx121", "The Connecticut Agricultural Experiment Station. (n.d.). Summaries of tick testing. CT.gov. Retrieved May 12, 2022, from https://portal.ct.gov/CAES/Fact-Sheets/Tick-Summary/Summaries-of-Tick-Testing", "Jordan, R. A., & Egizi, A. (2019). The growing importance of lone star ticks in a Lyme disease endemic county: Passive tick surveillance in Monmouth County, NJ, 2006 - 2016. PloS one, 14(2), e0211778. https://doi.org/10.1371/journal.pone.0211778"]} 
    more » « less
  5. Abstract

    Increasingly, geographic approaches to assessing the risk of tick‐borne diseases are being used to inform public health decision‐making and surveillance efforts. The distributions of key tick species of medical importance are often modeled as a function of environmental factors, using niche modeling approaches to capture habitat suitability. However, this is often disconnected from the potential distribution of key host species, which may play an important role in the actual transmission cycle and risk potential in expanding tick‐borne disease risk. Using species distribution modeling, we explore the potential geographic range ofOryzomys palustris, the marsh rice rat, which has been implicated as a potential reservoir host ofRickettsia parkeri, a pathogen transmitted by the Gulf Coast tick (Amblyomma maculatum) in the southeastern United States. Due to recent taxonomic reclassification ofO. palustrissubspecies, we reclassified geolocated collections records into the newer clade definitions. We modeled the distribution of the two updated clades in the region, establishing for the first time, range maps and distributions of these two clades. The predicted distribution of both clades indicates a largely Gulf and southeastern coastal distribution. Estimated suitable habitat forO. palustrisextends into the southern portion of the Mid‐Atlantic region, with a discontinuous, limited area of suitability in coastal California. Broader distribution predictions suggest potential incursions along the Mississippi River. We found considerable overlap of predictedO. palustrisranges with the distribution ofA. maculatum, indicating the potential need for extended surveillance efforts in those overlapping areas and attention to the role of hosts in transmission cycles.

     
    more » « less