skip to main content


Title: Hormonal Prostaglandin F2α Mediates Behavioral Responsiveness to a Species-Specific Multi-component Male Hormonal Sex Pheromone in a Female Fish
Synopsis Although hormonally-derived female sex pheromones have been well described in approximately a dozen species of teleost fish, only a few male sex pheromones have been characterized and the neuroendocrine underpinnings of behavioral responsiveness to them is not understood. Herein, we describe a study that addresses this question using the goldfish, Carassius auratus, an important model species of how hormones drive behavior in egg-laying teleost fishes. Our study had four components. First, we examined behavioral responsiveness of female goldfish and found that when injected with prostaglandin F2α (PGF2α), a treatment that drives female sexual receptivity, and found that they became strongly and uniquely attracted to the odor of conspecific mature males, while non-PGF2α-treated goldfish did not discern males from females. Next, we characterized the complexity and specificity of the male pheromone by examining the responsiveness of PGF2α-treated females to the odor of either mature male conspecifics or male common carp odor, as well as their nonpolar and polar fractions. We found that the odor of male goldfish was more attractive than that of male common carp, and that its activity was attributable to both its nonpolar and polar fractions with the later conveying information on species-identity. Third, we hypothesized that androstenedione (AD), a 19-carbon sex steroid produced by all male fish might be the nonpolar fraction and tested whether PGF2α-treated goldfish were attracted to either AD alone or as part of a mixture in conspecific water. We found that while AD was inactive on its own, it became highly attractive when added to previously unattractive female conspecific water. Lastly, in a test of whether nonhormonal conspecific odor might determine species-specificity, we added AD to water of three species of fish and found that while AD made goldfish water strongly attractive, its effects on other species holding water were small. We conclude that circulating PGF2α produced at the time of ovulation induces behavioral sensitivity to a male sex pheromone in female goldfish and that this male pheromone is comprised of AD and a mixture of body metabolites. Because PGF2α commonly mediates ovulation and female sexual behavior in egg-laying fishes, and AD is universally produced by male fishes as a precursor to testosterone, we suggest that these two hormones may have similar roles mediating male–female behavior and communication in many species of fish.  more » « less
Award ID(s):
2035226
PAR ID:
10312590
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
61
Issue:
1
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BACKGROUND

    Geographic variation in male response to sex pheromone lures has been studied in the field in a number of moth species. However, only a few studies have investigated geographic variation in female calling and sex pheromone under field conditions. For an effective field implementation of sex pheromone lures, it is essential to know the local sex pheromone blend and local timing of sexual communication. We investigated the level and extent of geographic variation in the sexual communication of the important agricultural pestHelicoverpa armigera(Lepidoptera, Noctuidae) in three continents.

    RESULTS

    We found there is no genetic variation in the calling behavior ofH. armigera. In the female sex pheromone, we found more between‐population variation than within‐population variation. In male response experiments, we found geographic variation as well. Strikingly, when adding the antagonistic compound Z11‐16:OAc to the pheromone blend ofH. armigera, significantly fewer males were caught in Australia and China, but not in Spain. This variation is likely not only due to local environmental conditions, such as photoperiod and temperature, but also to the presence of other closely related species with which communication interference may occur.

    Conclusion

    Finding geographic variation in both the female sexual signal and the male response in this pest calls for region‐specific pheromone lures. Our study shows that the analysis of geographic variation in moth female sex pheromones as well as male responses is important for effectively monitoring pest species that occur around the globe. © 2020 The Authors.Pest Management Sciencepublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

     
    more » « less
  2. Abstract

    The sex pheromone system of ~160,000 moth species acts as a powerful form of assortative mating whereby females attract conspecific males with a species-specific blend of volatile compounds. Understanding how female pheromone production and male preference coevolve to produce this diversity requires knowledge of the genes underlying change in both traits. In the European corn borer moth, pheromone blend variation is controlled by two alleles of an autosomal fatty-acyl reductase gene expressed in the female pheromone gland (pgFAR). Here we show that asymmetric male preference is controlled bycis-acting variation in a sex-linked transcription factor expressed in the developing male antenna,bric à brac(bab). A genome-wide association study of preference using pheromone-trapped males implicates variation in the 293 kbbabintron 1, rather than the coding sequence. Linkage disequilibrium betweenbabintron 1 andpgFARfurther validatesbabas the preference locus, and demonstrates that the two genes interact to contribute to assortative mating. Thus, lack of physical linkage is not a constraint for coevolutionary divergence of female pheromone production and male behavioral response genes, in contrast to what is often predicted by evolutionary theory.

     
    more » « less
  3. Abstract

    Firefly flashes are well-known visual signals used by these insects to find, identify, and choose mates. However, many firefly species have lost the ability to produce light as adults. These “unlighted” species generally lack developed adult light organs, are diurnal rather than nocturnal, and are believed to use volatile pheromones acting over a distance to locate mates. While cuticular hydrocarbons, which may function in mate recognition at close range, have been examined for a handful of the over 2000 extant firefly species, no volatile pheromone has ever been identified. In this study, using coupled gas chromatography - electroantennographic detection, we detected a single female-emitted compound that elicited antennal responses from wild-caught male winter fireflies,Photinus corruscus. The compound was identified as (1S)-exo-3-hydroxycamphor (hydroxycamphor). In field trials at two sites across the species’ eastern North American range, large numbers of maleP. corruscuswere attracted to synthesized hydroxycamphor, verifying its function as a volatile sex attractant pheromone. Males spent more time in contact with lures treated with synthesized hydroxycamphor than those treated with solvent only in laboratory two-choice assays. Further, using single sensillum recordings, we characterized a pheromone-sensitive odorant receptor neuron in a specific olfactory sensillum on maleP. corruscusantennae and demonstrated its sensitivity to hydroxycamphor. Thus, this study has identified the first volatile pheromone and its corresponding sensory neuron for any firefly species,and provides a tool for monitoringP. corruscuspopulations for conservation and further inquiry into the chemical and cellular bases for sexual communication among fireflies.

     
    more » « less
  4. Abstract

    Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed ‘subgenome dominance’ remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.

     
    more » « less
  5. Behavior is often linked to gonadal sex; however, ecological or social environments can induce plasticity in sex-biased behaviors. In biparental species, pairs may divide offspring care into two parental roles, in which one parent specializes in territory defense and the other in nest care. The African cichlid fish Julidochromis marlieri displays plasticity in sex-biased behaviors. In Lake Tanganyika, J. marlieri form female-larger pairs in which the female is more aggressive than the male who performs more nest care, but under laboratory conditions, male-larger pairs can be formed in which these sex-biased behaviors are reversed. We investigated the influence of social environment on behavior by observing how individuals in both pair-types respond to conspecific intruders of either sex. We examined behavioral responses to three factors: sex of the subject, relative size of the subject, and the sex of the intruder. We confirm that relative size is a factor in behavior. The larger fish in the pair is more aggressive than the smaller fish is towards an intruder. While neither fish in the female-larger pairs varied their behaviors in response to the sex of the intruder, both members of the male-larger pairs were sensitive to intruder sex. Both individuals in the male-larger pairs engaged in more biting behaviors towards the intruder. Intruder biting behaviors strongly correlated with the biting behavior of the larger individual in the pair and occurred more frequently when encountering pairs with same sex as the larger fish when compared to pairs with the same sex as the smaller fish. Our results support the role of the social environment as a contributor in the expression of sex-biased behavior.

     
    more » « less