GW170817 showed that neutron star mergers not only emit gravitational waves but also can release electromagnetic signatures in multiple wavelengths. Within the first half of the third observing run of the Advanced LIGO and Virgo detectors, there have been a number of gravitational wave candidates of compact binary systems for which at least one component is potentially a neutron star. In this article, we look at the candidates S190425z, S190426c, S190510g, S190901ap, and S190910h, predicted to have potentially a non-zero remnant mass, in more detail. All these triggers have been followed up with extensive campaigns by the astronomical communitymore »
The updated DESGW processing pipeline for the third LIGO/VIRGO observing run
The DESGW group seeks to identify electromagnetic counterparts of gravitational wave events seen by the LIGO-VIRGO network, such as those expected from binary neutron star mergers or neutron star-black hole mergers. DESGW was active throughout the first two LIGO observing seasons, following up several binary black hole mergers and the first binary neutron star merger, GW170817. This work describes the modifications to the observing strategy generation and image processing pipeline between the second (ending in August 2017) and third (beginning in April 2019) LIGO observing seasons. The modifications include a more robust observing strategy generator, further parallelization of the image reduction software and difference imaging processing pipeline, data transfer streamlining, and a web page listing identified counterpart candidates that updates in real time. Taken together, the additional parallelization steps enable the identification of potential electromagnetic counterparts within fully calibrated search images in less than one hour, compared to the 3-5 hours it would typically take during the first two seasons. These performance improvements are critical to the entire EM follow-up community, as rapid identification (or rejection) of candidates enables detailed and rapid spectroscopic follow-up by multiple instruments, leading to more information about the environment immediately following such gravitational wave events.
- Editors:
- Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W.
- Publication Date:
- NSF-PAR ID:
- 10312602
- Journal Name:
- EPJ Web of Conferences
- Volume:
- 245
- ISSN:
- 2100-014X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Joint multimessenger observations with gravitational waves and electromagnetic (EM) data offer new insights into the astrophysical studies of compact objects. The third Advanced LIGO and Advanced Virgo observing run began on 2019 April 1; during the 11 months of observation, there have been 14 compact binary systems candidates for which at least one component is potentially a neutron star. Although intensive follow-up campaigns involving tens of ground and space-based observatories searched for counterparts, no EM counterpart has been detected. Following on a previous study of the first six months of the campaign, we present in this paper the nextmore »
-
null (Ed.)ABSTRACT Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole–neutron star candidates has highlighted the need for a better discrimination criterion to support this effort. At the moment, low-latency gravitational-wave alerts contain preliminary information about binary properties and hence whether a detected binary might have an electromagnetic counterpart. The current alert method is a classifier that estimates the probability that there is a debris disc outside the black hole created during the merger as wellmore »
-
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test threemore »
-
Abstract We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systemsmore »