This paper proposes a set of novel optimization algorithms for solving a class of convex optimization problems with time-varying streaming cost functions. We develop an approach to track the optimal solution with a bounded error. Unlike prior work, our algorithm is executed only by using the first-order derivatives of the cost function, which makes it computationally efficient for optimization with time-varying cost function. We compare our algorithms to the gradient descent algorithm and show why gradient descent is not an effective solution for optimization problems with time-varying cost. Several examples, including solving a model predictive control problem cast as a convex optimization problem with a streaming time-varying cost function, demonstrate our results.
more »
« less
Data-driven synthesis of optimization-based controllers for regulation of unknown linear systems
This paper proposes a data-driven framework to solve time-varying optimization problems associated with unknown linear dynamical systems. Making online control decisions to steer a system to the solution trajectory of a time-varying optimization problem is a central goal in many modern engineering applications. Yet, the available methods critically rely on a precise knowledge of the system dynamics, thus requiring ad-hoc system identification and model refinement phases. In this work, we leverage tools from behavioral theory to show that the steady-state transfer function of a system can be computed from control experiments without knowledge or estimation of the system model. Such direct computation allows us to avoid the explicit model identification phase, and is significantly more tractable than the direct model-based computation. We leverage the data-driven representation to design a controller inspired from a gradient-descent method that drives the system to the solution of an unconstrained optimization problem, without any knowledge of time-varying disturbances affecting the model equation. Results are tailored to cost functions that are smooth and satisfy the Polyak-Lojasiewicz inequality. Simulation results illustrate the technical findings.
more »
« less
- PAR ID:
- 10312630
- Date Published:
- Journal Name:
- Proceedings of the IEEE Conference on Decision Control
- ISSN:
- 0743-1546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The confluence of advanced networking (5G/6G) and distributed cloud technologies (edge/fog computing) are rapidly transforming next-generation networks into highly distributed computation platforms, especially suited to host emerging resource-intensive and latency-sensitive services (e.g., smart transportation/city/factory, real-time computer vision, augmented reality). In this paper, we leverage the recently proposed Cloud Network Flow (CNF) modeling and optimization framework to design a novel two-timescale orchestration system for the joint control of communication and computation resources in cloud-integrated networks. The Long-Term Controller solves a properly constructed CNF optimization problem at a longer timescale that determines i) the end-to-end CNF routes (defining data paths and processing locations) for each service chain and ii) the associated allocation of communication and computation resources. The Short-Term Controller uses a local control policy to adjust the allocation of communication and computation resources based on queue state observations at a shorter timescale. Driven by the lack of proper simulation tools, we also develop new ns-3 features that allow modeling and simulation of cloud-integrated networks equipped with both communication and computation resources hosting arbitrary service chains. Finally, we integrate the proposed orchestration system into ns-3 to evaluate and analyze the dynamic orchestration of a set of representative service chains over a hierarchical cloud-integrated network.more » « less
-
null (Ed.)Abstract An autonomous adaptive model predictive control (MPC) architecture is presented for control of heating, ventilation, and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A yearlong simulation with a realistic plant shows that both of the features of the proposed architecture—periodic model and disturbance update and convexification of the planning problem—are essential to get performance improvement over a commonly used baseline controller. Without these features, long-term energy savings from MPC can be small while with them, the savings from MPC become substantial.more » « less
-
The growing success of graph signal processing (GSP) approaches relies heavily on prior identification of a graph over which network data admit certain regularity. However, adaptation to increasingly dynamic environments as well as demands for real-time processing of streaming data pose major challenges to this end. In this context, we develop novel algorithms for online network topology inference given streaming observations assumed to be smooth on the sought graph. Unlike existing batch algorithms, our goal is to track the (possibly) time-varying network topology while maintaining the memory and computational costs in check by processing graph signals sequentially-in-time. To recover the graph in an online fashion, we leverage proximal gradient (PG) methods to solve a judicious smoothness-regularized, time-varying optimization problem. Under mild technical conditions, we establish that the online graph learning algorithm converges to within a neighborhood of (i.e., it tracks) the optimal time-varying batch solution. Computer simulations using both synthetic and real financial market data illustrate the effectiveness of the proposed algorithm in adapting to streaming signals to track slowly-varying network connectivity.more » « less
-
A promising direction toward improving the performance of wave energy converter (WEC) farms is to leverage a system-level integrated approach called control co-design (CCD), integrating geometric attributes, control parameters, and layout. However, the resulting optimization problem requires the estimation of hydrodynamic coefficients through computationally prohibitive numerical methods such as multiple scattering (MS). To mitigate this bottleneck, we construct data-driven surrogate models (SMs) using artificial neural networks and many-body expansion. To rectify errors in SMs, a hybrid optimization strategy, that involves solving an optimization problem with a genetic algorithm and SMs to generate a starting point which is then used by a gradient-based optimizer and MS, is devised. The effectiveness and efficiency of the proposed approach are demonstrated for a 5-WEC farm. For layout optimization study, the proposed framework offers a 91-fold increase in computational efficiency compared to the direct usage of MS. The framework also enables complex investigations, including concurrent geometry, control, and layout optimization of heaving cylindrical WEC devices in probabilistic irregular waves across various US coastal locations. The method’s scalability is assessed for a 25-WEC farm and the results indicate promising directions toward a practical framework for integrated WEC farm design with more tractable computational demands.more » « less
An official website of the United States government

