skip to main content


This content will become publicly available on July 10, 2025

Title: First-Order Dynamic Optimization for Streaming Convex Costs
This paper proposes a set of novel optimization algorithms for solving a class of convex optimization problems with time-varying streaming cost functions. We develop an approach to track the optimal solution with a bounded error. Unlike prior work, our algorithm is executed only by using the first-order derivatives of the cost function, which makes it computationally efficient for optimization with time-varying cost function. We compare our algorithms to the gradient descent algorithm and show why gradient descent is not an effective solution for optimization problems with time-varying cost. Several examples, including solving a model predictive control problem cast as a convex optimization problem with a streaming time-varying cost function, demonstrate our results.  more » « less
Award ID(s):
1653838
PAR ID:
10554053
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8265-5
Page Range / eLocation ID:
2194 to 2199
Subject(s) / Keyword(s):
Time-varying optimization, convex optimization, machine learning, information stream
Format(s):
Medium: X
Location:
Toronto, ON, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a new feasible proximal gradient method for constrained optimization where both the objective and constraint functions are given by summation of a smooth, possibly nonconvex function and a convex simple function. The algorithm converts the original problem into a sequence of convex subproblems. Formulating those subproblems requires the evaluation of at most one gradient-value of the original objective and constraint functions. Either exact or approximate subproblems solutions can be computed efficiently in many cases. An important feature of the algorithm is the constraint level parameter. By carefully increasing this level for each subproblem, we provide a simple solution to overcome the challenge of bounding the Lagrangian multipliers and show that the algorithm follows a strictly feasible solution path till convergence to the stationary point. We develop a simple, proximal gradient descent type analysis, showing that the complexity bound of this new algorithm is comparable to gradient descent for the unconstrained setting which is new in the literature. Exploiting this new design and analysis technique, we extend our algorithms to some more challenging constrained optimization problems where (1) the objective is a stochastic or finite-sum function, and (2) structured nonsmooth functions replace smooth components of both objective and constraint functions. Complexity results for these problems also seem to be new in the literature. Finally, our method can also be applied to convex function constrained problems where we show complexities similar to the proximal gradient method.

     
    more » « less
  2. Min-max optimization is emerging as a key framework for analyzing problems of robustness to strategically and adversarially generated data. We propose the random reshuffling-based gradient-free Optimistic Gradient Descent-Ascent algorithm for solving convex-concave min-max problems with finite sum structure. We prove that the algorithm enjoys the same convergence rate as that of zeroth-order algorithms for convex minimization problems. We deploy the algorithm to solve the distributionally robust strategic classification problem, where gradient information is not readily available, by reformulating the latter into a finite dimensional convex concave min-max problem. Through illustrative simulations, we observe that our proposed approach learns models that are simultaneously robust against adversarial distribution shifts and strategic decisions from the data sources, and outperforms existing methods from the strategic classification literature. 
    more » « less
  3. We study strongly convex distributed optimization problems where a set of agents are interested in solving a separable optimization problem collaboratively. In this article, we propose and study a two-time-scale decentralized gradient descent algorithm for a broad class of lossy sharing of information over time-varying graphs. One time-scale fades out the (lossy) incoming information from neighboring agents, and one time-scale regulates the local loss functions' gradients. We show that assuming a proper choice of step-size sequences, certain connectivity conditions, and bounded gradients along the trajectory of the dynamics, the agents' estimates converge to the optimal solution with the rate of O(T^{−1/2}) . We also provide novel tools to study distributed optimization with diminishing averaging weights over time-varying graphs. 
    more » « less
  4. We consider optimal transport-based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about the value function, the optimal policy, and the worst-case optimal transport adversarial model. These results expose a rich structure embedded in the DRO problem (e.g., strong convexity even if the non-DRO problem is not strongly convex, a suitable scaling of the Lagrangian for the DRO constraint, etc., which are crucial for the design of efficient algorithms). As a consequence of these results, one can develop efficient optimization procedures that have the same sample and iteration complexity as a natural non-DRO benchmark algorithm, such as stochastic gradient descent.

     
    more » « less
  5. We introduce a generic scheme for accelerating gradient-based optimization methods in the sense of Nesterov. The approach, called Catalyst, builds upon the inexact accelerated proximal point algorithm for minimizing a convex objective function, and consists of approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. One of the keys to achieve acceleration in theory and in practice is to solve these sub-problems with appropriate accuracy by using the right stopping criterion and the right warm-start strategy. We give practical guidelines to use Catalyst and present a comprehensive analysis of its global complexity. We show that Catalyst applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, MISO/Finito, and their proximal variants. For all of these methods, we establish faster rates using the Catalyst acceleration, for strongly convex and non-strongly convex objectives. We conclude with extensive experiments showing that acceleration is useful in practice, especially for ill-conditioned problems. 
    more » « less