skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Nonlinear Stability of Schwarzschild under polarized perturbations
We prove the nonlinear stability of the Schwarzschild spacetime under axially symmetric polarized perturbations, i.e. solutions of the Einstein vacuum equations for asymptotically flat $1+3$ dimensional Lorentzian metrics which admit a hypersurface orthogonal spacelike Killing vectorfield with closed orbits. While building on the remarkable advances made in the last 15 years on establishing quantitative linear stability, the paper introduces a series of new ideas among which we emphasize the \textit{general covariant modulation} (GCM) procedure which allows us to construct, dynamically, the center of mass frame of the final state. The mass of the final state itself is tracked using the well known Hawking mass relative to a well adapted foliation itself connected to the center of mass frame. Our work here is the first to prove the nonlinear stability of Schwarzschild in a restricted class of nontrivial perturbations. To a large extent, the restriction to this class of perturbations is only needed to ensure that the final state of evolution is another Schwarzschild space. We are thus confident that our procedure may apply in a more general setting.  more » « less
Award ID(s):
1800841
PAR ID:
10312662
Author(s) / Creator(s):
;
Editor(s):
Chang, A; Griffith, P; Naor, A
Date Published:
Journal Name:
Annals of mathematics studies
Volume:
210
Issue:
210
ISSN:
0066-2313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the stability with respect to a broad class of perturbations of gapped ground-state phases of quantum spin systems defined by frustration-free Hamiltonians. The core result of this work is a proof using the Bravyi–Hastings–Michalakis (BHM) strategy that under a condition of local topological quantum order (LTQO), the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential. Compared to previous work, we expand the class of frustration-free quantum spin models that can be handled to include models with more general boundary conditions, and models with discrete symmetry breaking. Detailed estimates allow us to formulate sufficient conditions for the validity of positive lower bounds for the gap that are uniform in the system size and that are explicit to some degree. We provide a survey of the BHM strategy following the approach of Michalakis and Zwolak, with alterations introduced to accommodate more general than just periodic boundary conditions and more general lattices. We express the fundamental condition known as LTQO by means of an indistinguishability radius, which we introduce. Using the uniform finite-volume results, we then proceed to study the thermodynamic limit. We first study the case of a unique limiting ground state and then also consider models with spontaneous breaking of a discrete symmetry. In the latter case, LTQO cannot hold for all local observables. However, for perturbations that preserve the symmetry, we show stability of the gap and the structure of the broken symmetry phases. We prove that the GNS Hamiltonian associated with each pure state has a non-zero spectral gap above the ground state. 
    more » « less
  2. We show that, for one-dimensional discrete Schrödinger operators, stability of Anderson localization under a class of rank one perturbations implies absence of intervals in spectra. The argument is based on well-known results of Gordon and del Rio–Makarov–Simon, combined with a way to consider perturbations whose ranges are not necessarily cyclic. The main application of the results is showing that a class of quasiperiodic operators with sawtooth-like potentials, for which such a version of stable localization is known, has Cantor spectra. We also obtain several results on gap filling under rank one perturbations for some general (not necessarily monotone) classes of quasiperiodic operators with discontinuous potentials. 
    more » « less
  3. We prove the nonlinear stability of the asymptotic behaviour of perturbations of subfamilies of Kasner solutions in the contracting time direction within the class of polarized T 2 -symmetric solutions of the vacuum Einstein equations with arbitrary cosmological constant Λ . This stability result generalizes the results proven in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )), which focus on the Λ = 0 case, and as in that article, the proof relies on an areal time foliation and Fuchsian techniques. Even for Λ = 0 , the results established here apply to a wider class of perturbations of Kasner solutions within the family of polarized T 2 -symmetric vacuum solutions than those considered in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )) and Fournodavlos G et al. (2020 Stable Big Bang formation for Einstein’s equations: the complete sub-critical regime . Preprint. ( http://arxiv.org/abs/2012.05888 )). Our results establish that the areal time coordinate takes all values in ( 0 , T 0 ] for some T 0 > 0 , for certain families of polarized T 2 -symmetric solutions with cosmological constant. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 1’. 
    more » « less
  4. Tobias Ekholm (Ed.)
    We prove nonlinear asymptotic stability of a large class of monotonic shear flows among solutions of the 2D Euler equations in the channel $$\mathbb{T}\times[0,1]$$. More precisely, we consider shear flows $(b(y),0)$ given by a function $$b$$ which is Gevrey smooth, strictly increasing, and linear outside a compact subset of the interval $(0,1)$ (to avoid boundary contributions which are incompatible with inviscid damping). We also assume that the associated linearized operator satisfies a suitable spectral condition, which is needed to prove linear inviscid damping. Under these assumptions, we show that if $$u$$ is a solution which is a small and Gevrey smooth perturbation of such a shear flow $(b(y),0)$ at time $t=0$, then the velocity field $$u$$ converges strongly to a nearby shear flow as the time goes to infinity. This is the first nonlinear asymptotic stability result for Euler equations around general steady solutions for which the linearized flow cannot be explicitly solved. 
    more » « less
  5. Abstract In this work, we consider the nonlinear Schrödinger equation (NLSE) in 2+1 dimensions with arbitrary nonlinearity exponentκin the presence of an external confining potential. Exact solutions to the system are constructed, and their stability as we increase the ‘mass’ (i.e., theL2norm) and the nonlinearity parameterκis explored. We observe both theoretically and numerically that the presence of the confining potential leads to wider domains of stability over the parameter space compared to the unconfined case. Our analysis suggests the existence of a stable regime of solutions for allκas long as their mass is less than a critical valueM*(κ). Furthermore, we find that there are two different critical masses, one corresponding to width perturbations and the other one to translational perturbations. The results of Derrick’s theorem are also obtained by studying the small amplitude regime of a four-parameter collective coordinate (4CC) approximation. A numerical stability analysis of the NLSE shows that the instability curveM*(κ)versus κlies below the two curves found by Derrick’s theorem and the 4CC approximation. In the absence of the external potential,κ= 1 demarcates the separation between the blowup regime and the stable regime. In this 4CC approximation, forκ< 1, when the mass is above the critical mass for the translational instability, quite complicated motions of the collective coordinates are possible. Energy conservation prevents the blowup of the solution as well as confines the center of the solution to a finite spatial domain. We call this regime the ‘frustrated’ blowup regime and give some illustrations. In an appendix, we show how to extend these results to arbitrary initial ground state solution data and arbitrary spatial dimensiond. 
    more » « less