skip to main content


Title: Inertial-range Magnetic-fluctuation Anisotropy Observed from Parker Solar Probe’s First Seven Orbits
Solar wind turbulence is anisotropic with respect to the mean magnetic field. Anisotropy leads to ambiguity when interpreting in situ turbulence observations in the solar wind because an apparent change in the measurements could be due to either the change of intrinsic turbulence properties or to a simple change of the spacecraft sampling direction. We demonstrate the ambiguity using the spectral index and magnetic compressibility in the inertial range observed by the Parker Solar Probe during its first seven orbits ranging from 0.1 to 0.6 au. To unravel the effects of the sampling direction, we assess whether the wave-vector anisotropy is consistent with a two-dimensional (2D) plus slab turbulence transport model and determine the fraction of power in the 2D versus slab component. Our results confirm that the 2D plus slab model is consistent with the data and the power ratio between 2D and slab components depends on radial distance, with the relative power in 2D fluctuations becoming smaller closer to the Sun.  more » « less
Award ID(s):
1655280
NSF-PAR ID:
10312699
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical journal
Volume:
924
Issue:
L5
ISSN:
1538-4365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D. The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field θ UB of either (i) 65° < θ UB < 115° or (ii) 0° < θ UB < 25° (155° < θ UB < 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them. 
    more » « less
  2. Aims. Solar Orbiter (SolO) was launched on February 9, 2020, allowing us to study the nature of turbulence in the inner heliopshere. We investigate the evolution of anisotropic turbulence in the fast and slow solar wind in the inner heliosphere using the nearly incompressible magnetohydrodynamic (NI MHD) turbulence model and SolO measurements. Methods. We calculated the two dimensional (2D) and the slab variances of the energy in forward and backward propagating modes, the fluctuating magnetic energy, the fluctuating kinetic energy, the normalized residual energy, and the normalized cross-helicity as a function of the angle between the mean solar wind speed and the mean magnetic field ( θ UB ), and as a function of the heliocentric distance using SolO measurements. We compared the observed results and the theoretical results of the NI MHD turbulence model as a function of the heliocentric distance. Results. The results show that the ratio of 2D energy and slab energy of forward and backward propagating modes, magnetic field fluctuations, and kinetic energy fluctuations increases as the angle between the mean solar wind flow and the mean magnetic field increases from θ UB  = 0° to approximately θ UB  = 90° and then decreases as θ UB  → 180°. We find that solar wind turbulence is a superposition of the dominant 2D component and a minority slab component as a function of the heliocentric distance. We find excellent agreement between the theoretical results and observed results as a function of the heliocentric distance. 
    more » « less
  3. Abstract During its 10th orbit around the Sun, the Parker Solar Probe sampled two intervals where the local Alfvén speed exceeded the solar wind speed, lasting more than 10 hours in total. In this paper, we analyze the turbulence and wave properties during these periods. The turbulence is observed to be Alfvénic and unbalanced, dominated by outward-propagating modes. The power spectrum of the outward-propagating Elsässer z + mode steepens at high frequencies while that of the inward-propagating z − mode flattens. The observed Elsässer spectra can be explained by the nearly incompressible (NI) MHD turbulence model with both 2D and Alfvénic components. The modeling results show that the z + spectra are dominated by the NI/slab component, and the 2D component mainly affects the z − spectra at low frequencies. An MHD wave decomposition based on an isothermal closure suggests that outward-propagating Alfvén and fast magnetosonic wave modes are prevalent in the two sub-Alfvénic intervals, while the slow magnetosonic modes dominate the super-Alfvénic interval in between. The slow modes occur where the wavevector is nearly perpendicular to the local mean magnetic field, corresponding to nonpropagating pressure-balanced structures. The alternating forward and backward slow modes may also be features of magnetic reconnection in the near-Sun heliospheric current sheet. 
    more » « less
  4. Abstract We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP. 
    more » « less
  5. Abstract

    Characterizing the azimuthal mode number,m, of ultralow‐frequency (ULF) waves is necessary for calculating radial diffusion of radiation belt electrons. A cross‐spectral technique is applied to the compressional Pc5 ULF waves observed by multiple pairs of GOES satellites to estimate the azimuthal mode structure during the 28‐31 May 2010 storm. We find that allowing for both positive and negativemis important to achieve a more realistic distribution of mode numbers and to resolve wave propagation direction. During the storm commencement when the solar wind dynamic pressure is high, ULF wave power is found to dominate at low‐mode numbers. An interesting change of sign inmoccurred around noon, which is consistent with the driving of ULF waves by solar wind buffeting around noon, creating antisunward wave propagation. The low‐mode ULF waves are also found to have a less global coverage in magnetic local time than previously assumed. In contrast, during the storm main phase and early recovery phase when the solar wind dynamic pressure is low and the auroral electrojet index is high, wave power is shown to be distributed over all modes from low to high. The high‐mode waves are found to cover a wider range of magnetic local time than what was previously assumed. Furthermore, to reduce the 2ambiguity in resolvingm, a cross‐pair analysis is performed on satellite field measurements for the first time, which is demonstrated to be effective in generating more reliable mode structure of ULF waves during high auroral electrojet periods.

     
    more » « less