Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella , a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.
more »
« less
Growing Degree-Day Measurement of Cyst Germination Rates in the Toxic Dinoflagellate Alexandrium catenella
ABSTRACT Blooms of many dinoflagellates, including several harmful algal bloom (HAB) species, are seeded and revived through the germination of benthic resting cysts. Temperature is a key determinant of cysts’ germination rate, and temperature–germination rate relationships are therefore fundamental to understanding species’ germling cell production, cyst bed persistence, and resilience to climate warming. This study measured germination by cysts of the HAB dinoflagellate Alexandrium catenella using a growing degree-day ( DD ) approach that accounts for the time and intensity of warming above a critical temperature. Time courses of germination at different temperatures were fit to lognormal cumulative distribution functions for the estimation of the median days to germination. As temperature increased, germination times decreased hyperbolically. DD scaling collapsed variability in germination times between temperatures after cysts were oxygenated. A parallel experiment demonstrated stable temperature–rate relationships in cysts collected during different phases of seasonal temperature cycles in situ over three years. DD scaling of the results from prior A. catenella germination studies showed consistent differences between populations across a wide range of temperatures and suggests selective pressure for different germination rates. The DD model provides an elegant approach to quantify and compare the temperature dependency of germination among populations, between species, and in response to changing environmental conditions. IMPORTANCE Germination by benthic life history stages is the first step of bloom initiation in many, diverse phytoplankton species. This study outlines a growing degree-day ( DD ) approach for comparing the temperature dependence of germination rates measured in different populations. Germination by cysts of Alexandrium catenella , a harmful algal bloom dinoflagellate that causes paralytic shellfish poisoning, is shown to require a defined amount of warming, measured in DD after cysts are aerated. Scaling by DD , the time integral of temperature difference from a critical threshold, enabled direct comparison of rates measured at different temperatures and in different studies.
more »
« less
- Award ID(s):
- 1840381
- PAR ID:
- 10343885
- Editor(s):
- Rudi, Knut
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 88
- Issue:
- 12
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In recent years, blooms of the neurotoxic dinoflagellateAlexandrium catenellahave been documented in Pacific Arctic waters, and the paralytic shellfish toxins (PSTs) that this species produces have been detected throughout the food web. These observations have raised significant concerns about the role that harmful algal blooms (HABs) will play in a rapidly changing Arctic. During a research cruise in summer 2022, a massive bloom ofA. catenellawas detected in real time as it was advected through the Bering Strait region. The bloom was exceptional in both spatial scale and density, extending > 600 km latitudinally, reaching concentrations > 174,000 cells L−1, and producing high‐potency PST congeners. Throughout the event, coastal stakeholders in the region were engaged and a multi‐faceted community response was mobilized. This unprecedented bloom highlighted the urgent need for response capabilities to ensure safe utilization of critical marine resources in a region that has little experience with HABs.more » « less
-
Harmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands.more » « less
-
The increase in emerging harmful algal blooms in the last decades has led to an extensive concern in understanding the mechanisms behind these events. In this paper, we assessed the growth of two blooming dinoflagellates (Alexandrium minutum and Heterocapsa triquetra) and their susceptibility to infection by the generalist parasitoid Parvilucifera rostrata under a temperature gradient. The growth of the two dinoflagellates differed across a range of temperatures representative of the Penzé Estuary (13 to 22 °C) in early summer. A. minutum growth increased across this range and was the highest at 19 and 22 °C, whereas H. triquetra growth was maximal at intermediate temperatures (15–18 °C). Interestingly, the effect of temperature on the parasitoid infectivity changed depending on which host dinoflagellate was infected with the dinoflagellate responses to temperature following a positive trend in A. minutum (higher infections at 20–22 °C) and a unimodal trend in H. triquetra (higher infections at 18 °C). Low temperatures negatively affected parasitoid infections in both hosts (i.e., “thermal refuge”). These results demonstrate how temperature shifts may not only affect bloom development in microalgal species but also their control by parasitoids.more » « less
-
In the rapidly changing Arctic ecosystem, the recent emergence of harmful algal blooms (HABs) threatens human and ecosystem health. There is increasing evidence that toxic dinoflagellates of the Alexandrium genus are blooming in the Pacific Arctic Ocean, in dense enough concentrations to necessitate shellfishing closures and to detect toxins in marine mammals that forge in Alaskan waters. Our understanding of the nutrient dynamics that sustain HABs in the Pacific Arctic is severely limited, particularly as these blooms tend to occur in late summer when dissolved inorganic nitrogen is drawn down and limits phytoplankton growth. Dissolved organic nitrogen could prove a critical nitrogen source for HABs in the Pacific Arctic, as it has in other regions. This dataset presents measurements taken on Leg 2 of a research cruise (NRS2022_02S) on the Research Vessel (R/V) Norseman II in Aug-Sep 2022 to characterize the nutrient usage by A. catenella. It includes the nutrients (silicate, phosophate, total dissolved nitrogen, and four dissolved nitrogen substrates), particulate organic carbon and nitrogen, and chlorophyll concentrations associated with the beginning of 13 incubation experiments in which we measured nitrogen uptake rates by the surface biological community. We also include the salinity and temperature measurements from CTD-mounted sensors for water collection from Niskin bottles for each incubation set up. Other associated datasets include: Leah McRaven & Robert Pickart. (2024). Conductivity Temperature Depth (CTD) data from the Norseman II (NRS22-1s and NRS22-2s), as part of the 2022 Origin and Fate of Harmful Algal Blooms in the Warming Chukchi Sea cruise. Arctic Data Center. doi:10.18739/A2B853K56. Evangeline Fachon, Donald M Anderson, Mrunmayee Pathare, Michael Brosnahan, Eric Muhlbach, Kali Horn, Nathaniel Spada, & Anushka Rajagopalan. (2024). Alexandrium catenella planktonic cell abundance and toxicity from the Norseman II (NRS2022_01S and NRS2022_02S), as part of the 2022 Origin and Fate of Harmful Algal Blooms in the Warming Chukchi Sea cruise. Arctic Data Center. doi:10.18739/A2804XM7S. Miguel Goni & Dean Stockwell. (2024). Conductivity-Temperature-Depth (CTD) Bottle Data from the Norseman II cruises (NRS2022_01S and NRS2022_02S) including Particulate Organic Carbon (POC) Particulate Nitrogen (PN), Chlorophyll (Chl), Phaeophytin (Phaeo), and dissolved nutrients (Nitrate, Nitrite, Phosphate, Silicate, and Ammonium) (2022). Arctic Data Center. doi:10.18739/A2M90249T.more » « less
An official website of the United States government

