skip to main content


Title: Vertically Aligned Carbon Nanofibers on Cu Foil as a 3D Current Collector for Reversible Li Plating/Stripping toward High‐Performance Li–S Batteries
Abstract

A vertically aligned carbon nanofiber (VACNF) array with unique conically stacked graphitic structure directly grown on a planar Cu current collector (denoted as VACNF/Cu) is used as a high‐porosity 3D host to overcome the commonly encountered issues of Li metal anodes. The excellent electrical conductivity and highly active lithiophilic graphitic edge sites facilitate homogenous coaxial Li plating/stripping around each VACNF and forming a uniform solid electrolyte interphase. The high specific surface area effectively reduces the local current density and suppresses dendrite growth during the charging/discharging processes. Meanwhile, this open nanoscale vertical 3D structure eliminates the volume changes during Li plating/stripping. As a result, highly reversible Li plating/stripping with high coulombic efficiency is achieved at various current densities. A low voltage hysteresis of 35 mV over 500 h in symmetric cells is achieved at 1 mA cm−2with an areal Li plating capacity of 2 mAh cm−2, which is far superior to the planar Cu current collector. Furthermore, a Li–S battery using a S@PAN cathode and a lithium‐plated VACNF/Cu (VACNF/Cu@Li) anode with slightly higher capacity (2 mAh cm−2) exhibits an excellent rate capability and high cycling stability with no capacity fading over 600 cycles.

 
more » « less
Award ID(s):
1707585 1703263
PAR ID:
10459665
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
4
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The commercialization of high‐energy Li‐metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two‐step electrochemical process, where Cu‐Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm−2and under a high current density of 10 mA cm−2. This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X‐ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.

     
    more » « less
  2. Reversible lithium metal anodes (LMAs) are the holy grail for future rechargeable lithium metal batteries. Threedimensional (3-D) conductive hosts have been extensively explored as an effective approach to suppressing dendrite formation and enabling reversible Li plating/stripping. However, the microscopic morphologies of Li plating and their correlation with the cell performance are not clear. Herein we unravel these issues using the vertically aligned carbon nanofiber (VACNF) array as a model 3-D conductive carbon host which has a welldefined vertical low-tortuosity structure allowing observation of the intrinsic Li morphologies infiltrated into the 3-D host. The VACNF array indeed provides much higher stability and reversibility for Li plating/stripping due to its high surface area and lithiophilic properties. We found that Li plating on both VACNF array and planar Cu electrodes follows the classical nucleation and growth model. Though the low plating current density (≤0.10 mA/cm2) provides better cycling stability consistent with the Sand’s equation, it forms sparse irregular grains stacked with dendrite-like long Li fibers. In contrast, the moderate to high plating current densities (1.0 - 5.0 mA/cm2) produce more uniform Li morphologies consisting of smaller micro-columns or micro-spheres. By decoupling the plating and stripping current densities, we unravel that the more uniform micro-columnar Li infiltrated in the VACNF array obtained at the moderate plating current density (~1.0 mA/cm2) indeed exhibits the highest cycling performance. This provides new insights into the relationship between macroscopic electrochemical tests and microscopic Li morphologies, aiding in optimizing the performance of LMAs based on 3-D conductive hosts. 
    more » « less
  3. Abstract

    The interrelation is explored between external pressure (0.1, 1, and 10 MPa), solid electrolyte interphase (SEI) structure/morphology, and lithium metal plating/stripping behavior. To simulate anode‐free lithium metal batteries (AF‐LMBs) analysis is performed on “empty” Cu current collectors in standard carbonate electrolyte. Lower pressure promotes organic‐rich SEI and macroscopically heterogeneous, filament‐like Li electrodeposits interspersed with pores. Higher pressure promotes inorganic F‐rich SEI with more uniform and denser Li film. A “seeding layer” of lithiated pristine graphene (pG@Cu) favors an anion‐derived F‐rich SEI and promotes uniform metal electrodeposition, enabling extended electrochemical stability at a lower pressure. State‐of‐the‐art electrochemical performance is achieved at 1MPa: pG‐enabled half‐cell is stable after 300 h (50 cycles) at 1 mA cm−2rate −3 mAh cm−2capacity (17.5 µm plated/stripped), with cycling Coulombic efficiency (CE) of 99.8%. AF‐LMB cells with high mass loading NMC622 cathode (21 mg cm−2) undergo 200 cycles with a CE of 99.4% at C/5‐charge and C/2‐discharge (1C = 178 mAh g−1). Density functional theory (DFT) highlights the differences in the adsorption energy of solvated‐Li+onto various crystal planes of Cu (100), (110), and (111), versus lithiated/delithiated (0001) graphene, giving insight regarding the role of support surface energetics in promoting SEI heterogeneity.

     
    more » « less
  4. Abstract

    Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of >99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO4cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2for 110 times at a negligible capacity decay of 0.01% per cycle.

     
    more » « less
  5. Abstract

    Traditional challenges of poor cycling stability and low Coulombic efficiency in Zinc (Zn) metal anodes have limited their practical application. To overcome these issues, this work introduces a single metal‐atom design featuring atomically dispersed single copper (Cu) atoms on 3D nitrogen (N) and oxygen (O) co‐doped porous carbon (CuNOC) as a highly reversible Zn host. The CuNOC structure provides highly active sites for initial Zn nucleation and further promotes uniform Zn deposition. The 3D porous architecture further mitigates the volume changes during the cycle with homogeneous Zn2+flux. Consequently, CuNOC demonstrates exceptional reversibility in Zn plating/stripping processes over 1000 cycles at 2 and 5 mA cm−2with a fixed capacity of 1 mAh cm−2, while achieving stable operation and low voltage hysteresis over 700 h at 5 mA cm−2and 5 mAh cm−2. Furthermore, density functional theory calculations show that co‐doping N and O on porous carbon with atomically dispersed single Cu atoms creates an efficient zincophilic site for stable Zn nucleation. A full cell with the CuNOC host anode and high loading V2O5cathode exhibits outstanding rate‐capability up to 5 A g−1and a stable cycle life over 400 cycles at 0.5 A g−1.

     
    more » « less