Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence of
- NSF-PAR ID:
- 10312848
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 30
- ISSN:
- 1463-9076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract R = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asR increases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofR and the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR . The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution. -
Abstract The polishing of oxide glass in aqueous solution is sensitive to not only the mechanical conditions applied by abrasives but also the chemistry of solution. This study elucidates the synergistic interactions of mechanical and chemical effects—especially, the synergetic effects of surface mechanochemical wear and subsurface dissolution are studied by measuring the material removal rate of soda lime silica (SLS) glass upon rubbing with a Pyrex glass ball in noncorrosive (neutral pH) in corrosive solutions (pH 10 and 13 NaOH) as a function of sliding speed. Based on the synergetic model of surface wear and subsurface dissolution, it is found that the mechanochemical surface reaction dominates the wear behavior of SLS glass in neutral and pH 10 solution conditions; the wear of SLS glass in pH 10 is enhanced, compared to the neutral pH case, due to the presence of OH‐ions at the sliding interface. In the case of pH 13, the dissolution of the densified subsurface region, which is formed due to interfacial friction during the surface wear, becomes significant, further enhancing the material removal yield. The finding provides an insight for designing an efficient polishing process in manufacturing of oxide glass materials with a good surface finish.
-
Poly(acrylamide- co -acrylic acid) (P(AAm- co -AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm- co -AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0–12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength ( I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient ( µ ), which decreased with increasing AA concentration. P(AAm- co -AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity ( µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) ( µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm- co -AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface.more » « less
-
null (Ed.)Abstract. Equimolal tris (2-amino-2-hydroxymethyl-propane-1,3-diol) buffer in artificialseawater is a well characterized and commonly used standard for oceanographic pH measurements. We evaluated the stability of tris pH when stored in purportedly gas-impermeable bags across a variety of experimental conditions, including bag type and storage in air vs. seawater over300 d. Bench-top spectrophotometric pH analysis revealed that the pH of tris stored in bags decreased at a rate of 0.0058±0.0011 yr−1 (mean slope ±95 % confidence interval of slope). The upper and lower bounds of expected pH change att=365 d, calculated using the averages and confidence intervals of slope and intercept of measured pH change vs. time data, were −0.0042 and −0.0076 from initial pH. Analyses of total dissolved inorganic carbonconfirmed that a combination of CO2 infiltration and/or microbialrespiration led to the observed decrease in pH. Eliminating the change in pH of bagged tris remains a goal, yet the rate of pH change is lower than many processes of interest and demonstrates the potential of bagged tris for sensor calibration and validation of autonomous in situ pH measurements.more » « less
-
The addition of V2O5 has been long known to increase the sulfur (as SO42-) solubility in borosilicate glasses. However, the mechanism governing this effect is still unknown. Although several studies have been published in the past two decades attempting to decipher the structural origins of increasing sulfur solubility as a function of V2O5 in borosilicate glasses, most of these studies remain inconclusive. The work presented in this paper attempts to answer the question, “Why does V2O5 increase sulfur solubility in borosilicate glasses?” Accordingly, a series of melt-quenched glasses in the system [30 Na2O – 5 Al2O3 – 15 B2O3 –50 SiO2](100-x) – xV2O5, where x varies between 0 – 9 mol.%, have been characterized for their short-to-intermediate range structure and the redox chemistry of vanadium using 11B, 27Al, 51V MAS NMR, Raman, and XPS spectroscopy. The impact of V2O5 on sulfur solubility in glasses has been followed by ICP-OES. The addition of ≤ 5 mol.% V2O5 results in a linear increase in sulfur solubility in the investigated glass system. Based on the results, we hypothesize that adding vanadium to the glasses increases their network connectivity, but reduces the network rigidity by replacing stronger Si–O–Si linkages with weaker Si–O–V linkages and forming (VO3)n-single chains. These modifications to the glass structure increase the flexibility of the network, thus making it possible to accommodate SO42− in their voids/open spaces.more » « less