Understanding the corrosion behavior of glasses in near-neutral environments is crucial for many technologies including glasses for regenerative medicine and nuclear waste immobilization. To maintain consistent pH values throughout experiments in the pH = 7 to 9 regime, buffer solutions containing tris(hydroxymethyl)aminomethane (“Tris”, or sometimes called THAM) are recommended in ISO standards 10993-14 and 23317 for evaluating biomaterial degradation and utilized throughout glass dissolution behavior literature—a key advantage being the absence of dissolved alkali/alkaline earth cations ( i.e. Na + or Ca 2+ ) that can convolute experimental results due to solution feedback effects. Although Tris is effective at maintaining the solution pH, it has presented concerns due to the adverse artificial effects it produces while studying glass corrosion, especially in borosilicate glasses. Therefore, many open questions still remain on the topic of borosilicate glass interaction with Tris-based solutions. We have approached this topic by studying the dissolution behavior of a sodium borosilicate glass in a wide range of Tris-based solutions at 65 °C with varied acid identity (Tris–HCl vs. Tris–HNO 3 ), buffer concentration (0.01 M to 0.5 M), and pH (7–9). The results have been discussed in reference to previous studies on this topic and the following conclusions have been made: (i) acid identity in Tris-based solutions does not exhibit a significant impact on the dissolution behavior of borosilicate glasses, (ii) ∼0.1 M Tris-based solutions are ideal for maintaining solution pH in the absence of obvious undesirable solution chemistry effects, and (iii) Tris–boron complexes can form in solution as a result of glass dissolution processes. The complex formation, however, exhibits a distinct temperature-dependence, and requires further study to uncover the precise mechanisms by which Tris-based solutions impact borosilicate glass dissolution behavior.
more »
« less
Clock transitions generated by defects in silica glass
Clock transitions (CTs) in spin systems, which occur at avoided level crossings, enhance quantum coherence lifetimes T2 because the transition becomes immune to the decohering effects of magnetic field fluctuations to first order. We present the first electron-spin resonance characterization of CTs in certain defect-rich silica glasses, noting coherence times up to 16 μs at the CTs. We find CT behavior at zero magnetic field in borosilicate and aluminosilicate glasses, but not in a variety of silica glasses lacking boron or aluminum. Annealing reduces or eliminates the zero-field signal. Since boron and aluminum have the same valence and are acceptors when substituted for silicon, we suggest the observed CT behavior could be generated by a spin-1 boron vacancy center within the borosilicate glass, and similarly, an aluminum vacancy center in the aluminosilicate glass.
more »
« less
- PAR ID:
- 10560666
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 125
- Issue:
- 25
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence ofR = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asRincreases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofRand the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR. The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution.more » « less
-
Combining thermal and pressure effect represents a novel approach to modify glass properties. However, the microscopic structural origin of these property modifications is complex and far from fully understood, especially in multicomponent glasses with mixed glass formers. In this paper, we have utilized classical molecular dynamics simulations with a set of composition dependent potentials to investigate pressure-quenching effect on sodium borosilicate glasses. Processes including hot compression, cold compression and subsequent annealing on the structures and properties are investigated and compared. It was found that applying pressure up to 10 GPa at the glass transition temperature led to permanent densifications and a dramatic increase of elastic moduli by 90%, while thermal annealing reversed the increase and applying pressure at ambient temperture did not increase the modulus. The main structural change of the hot compressed sample is the increase of four-fold coordinated boron while silicon remains four-fold coordinated. The sodium environment shows an increase of coordination number and a decrease of Nasingle bondO and Nasingle bondNa bond distances. Medium range structure is also changed with an increase of 8-membered rings. These results provide atomistic insights of the pressure quench effect on borosilicate glasses.more » « less
-
Abstract The recently discovered spin-active boron vacancy (V$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ ) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system fromD3htoC2v. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.more » « less
-
Abstract Previous research has shown a consistent discrepancy in the reported structure of alkaline earth aluminosilicate glasses using molecular dynamics (MD) simulations versus nuclear magnetic resonance (NMR) experiments. Past MD results have consistently shown less than 5% five‐coordinated Al units (Al[5]) in peraluminous glass compositions, but with high fractions of triple‐bonded oxygens (TBO, i.e., triclusters). Experimental results have shown a high fraction of Al[5]with no direct evidence for TBO. One of the main criticisms associated with high TBO content found in MD‐generated glass structures is the use of classical interatomic potentials. To investigate this issue, we analyze the formation of both TBO and Al[5]using three independently developed potentials with varying silica content and [Al2O3]/[MgO] ratios for the magnesium aluminosilicate (MAS) system. We specifically choose compositions with high ratios of alumina to magnesium oxide as this region is not as commonly explored. Results indicate that Al[5]charge compensates the Al network in metaluminous compositions (compositions with more Mg than Al) while both TBO and Al[5]are prevalent in peraluminous ranges (high Al content compositions) to charge balance Al units. From the literature, NMR experiments report MAS glasses with varying Al[5]fractions and show significant differences for the same reported compositions. When comparing MD results from this work, the fraction of calculated Al[5]is within the experimental variation found in the literature. This indicates that classical potentials can accurately capture alumina environments and that both Al[5]and TBO can coexist in relatively high fractions. From the consistency in our results, we conclude that TBOs are inherent to the aluminosilicate glass system and are not simulation artifacts.more » « less
An official website of the United States government
