Abstract Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence ofR = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asRincreases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofRand the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR. The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution.
more »
« less
Dissolution kinetics of a sodium borosilicate glass in Tris buffer solutions: impact of Tris concentration and acid (HCl/HNO 3 ) identity
Understanding the corrosion behavior of glasses in near-neutral environments is crucial for many technologies including glasses for regenerative medicine and nuclear waste immobilization. To maintain consistent pH values throughout experiments in the pH = 7 to 9 regime, buffer solutions containing tris(hydroxymethyl)aminomethane (“Tris”, or sometimes called THAM) are recommended in ISO standards 10993-14 and 23317 for evaluating biomaterial degradation and utilized throughout glass dissolution behavior literature—a key advantage being the absence of dissolved alkali/alkaline earth cations ( i.e. Na + or Ca 2+ ) that can convolute experimental results due to solution feedback effects. Although Tris is effective at maintaining the solution pH, it has presented concerns due to the adverse artificial effects it produces while studying glass corrosion, especially in borosilicate glasses. Therefore, many open questions still remain on the topic of borosilicate glass interaction with Tris-based solutions. We have approached this topic by studying the dissolution behavior of a sodium borosilicate glass in a wide range of Tris-based solutions at 65 °C with varied acid identity (Tris–HCl vs. Tris–HNO 3 ), buffer concentration (0.01 M to 0.5 M), and pH (7–9). The results have been discussed in reference to previous studies on this topic and the following conclusions have been made: (i) acid identity in Tris-based solutions does not exhibit a significant impact on the dissolution behavior of borosilicate glasses, (ii) ∼0.1 M Tris-based solutions are ideal for maintaining solution pH in the absence of obvious undesirable solution chemistry effects, and (iii) Tris–boron complexes can form in solution as a result of glass dissolution processes. The complex formation, however, exhibits a distinct temperature-dependence, and requires further study to uncover the precise mechanisms by which Tris-based solutions impact borosilicate glass dissolution behavior.
more »
« less
- PAR ID:
- 10312848
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 30
- ISSN:
- 1463-9076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Buffers of known quality for the calibration of seawater pHTmeasurements are not widely or commercially available. Although there exist published compositions for the 0.04 mol kg‐H2O−1equimolar buffer 2‐amino‐2‐hydroxymethyl‐1,3‐propanediol (TRIS)‐TRIS · H+in synthetic seawater, there are no explicit procedures that describe preparing this buffer to achieve a particular pHTwith a known uncertainty. Such a procedure is described here which makes use of easily acquired laboratory equipment and techniques to produce a buffer with a pHTwithin 0.006 of the published pHTvalue originally assigned by DelValls and Dickson (1998), 8.094 at 25°C. Such a buffer will be suitable for the calibration of pH measurements expected to fulfil the “weather” uncertainty goal of the Global Ocean Acidification Observation Network of 0.02 in pHT, an uncertainty goal appropriate to “identify relative spatial patterns and short‐term variation.”more » « less
-
Poly(acrylamide- co -acrylic acid) (P(AAm- co -AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm- co -AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0–12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength ( I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient ( µ ), which decreased with increasing AA concentration. P(AAm- co -AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity ( µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) ( µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm- co -AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface.more » « less
-
Clock transitions (CTs) in spin systems, which occur at avoided level crossings, enhance quantum coherence lifetimes T2 because the transition becomes immune to the decohering effects of magnetic field fluctuations to first order. We present the first electron-spin resonance characterization of CTs in certain defect-rich silica glasses, noting coherence times up to 16 μs at the CTs. We find CT behavior at zero magnetic field in borosilicate and aluminosilicate glasses, but not in a variety of silica glasses lacking boron or aluminum. Annealing reduces or eliminates the zero-field signal. Since boron and aluminum have the same valence and are acceptors when substituted for silicon, we suggest the observed CT behavior could be generated by a spin-1 boron vacancy center within the borosilicate glass, and similarly, an aluminum vacancy center in the aluminosilicate glass.more » « less
-
The addition of V2O5 has been long known to increase the sulfur (as SO42-) solubility in borosilicate glasses. However, the mechanism governing this effect is still unknown. Although several studies have been published in the past two decades attempting to decipher the structural origins of increasing sulfur solubility as a function of V2O5 in borosilicate glasses, most of these studies remain inconclusive. The work presented in this paper attempts to answer the question, “Why does V2O5 increase sulfur solubility in borosilicate glasses?” Accordingly, a series of melt-quenched glasses in the system [30 Na2O – 5 Al2O3 – 15 B2O3 –50 SiO2](100-x) – xV2O5, where x varies between 0 – 9 mol.%, have been characterized for their short-to-intermediate range structure and the redox chemistry of vanadium using 11B, 27Al, 51V MAS NMR, Raman, and XPS spectroscopy. The impact of V2O5 on sulfur solubility in glasses has been followed by ICP-OES. The addition of ≤ 5 mol.% V2O5 results in a linear increase in sulfur solubility in the investigated glass system. Based on the results, we hypothesize that adding vanadium to the glasses increases their network connectivity, but reduces the network rigidity by replacing stronger Si–O–Si linkages with weaker Si–O–V linkages and forming (VO3)n-single chains. These modifications to the glass structure increase the flexibility of the network, thus making it possible to accommodate SO42− in their voids/open spaces.more » « less
An official website of the United States government

