Geometry Processing with Intrinsic Triangulations
This course provides a first introduction to intrinsic triangulations and their use in mesh processing algorithms. As geometric data becomes more ubiquitous, e.g., in applications such as augmented reality or machine learning, there is a pressing need to develop algorithms that work reliably on low-quality data. Intrinsic triangulations provide a powerful framework for these problems, by de-coupling the mesh used to encode geometry from the one used for computation. The basic shift in perspective is to encode the geometry of a mesh not in terms of ordinary vertex positions, but instead only in terms of edge lengths. Intrinsic triangulations have a long history in mathematics, but only in recent years have been applied to practical geometric computing. The course begins by giving motivation for intrinsic triangulations in terms of recent problems in computer graphics, followed by an interactive coding session where participants can make first contact with the idea of intrinsic meshes. We then give some mathematical background, and describe key data structures (overlay, signpost, normal coordinates). Using this machinery, we translate algorithms from computational geometry and scientific computing into cutting-edge algorithms for curved surfaces. For instance, we look at mesh parameterization, vector field processing, finding geodesics, solving partial differential equations (PDEs), and more. We also discuss processing of nonmanifold meshes and point clouds; participants can explore these algorithms via interactive demos. We conclude with a discussion of open questions and opportunities for future work.  more » « less
Award ID(s):
NSF-PAR ID:
10313027
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SIGGRAPH '21: ACM SIGGRAPH 2021 Courses
Format(s):
Medium: X
National Science Foundation
##### More Like this
1. This paper describes a method for fast simplification of surface meshes. Whereas past methods focus on visual appearance, our goal is to solve equations on the surface. Hence, rather than approximate the extrinsic geometry, we construct a coarseintrinsic triangulationof the input domain. In the spirit of thequadric error metric (QEM), we perform greedy decimation while agglomerating global information about approximation error. In lieu of extrinsic quadrics, however, we store intrinsic tangent vectors that track how far curvature drifts during simplification. This process also yields a bijective map between the fine and coarse mesh, and prolongation operators for both scalar- and vector-valued data. Moreover, we obtain hard guarantees on element quality via intrinsic retriangulation---a feature unique to the intrinsic setting. The overall payoff is a black box approach to geometry processing, which decouples mesh resolution from the size of matrices used to solve equations. We show how our method benefits several fundamental tasks, including geometric multigrid, all-pairs geodesic distance, mean curvature flow, geodesic Voronoi diagrams, and the discrete exponential map.

more » « less
2. Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations.
more » « less
3. (Ed.)
The Reeb graph of a scalar function that is defined on a domain gives a topologically meaningful summary of that domain. Reeb graphs have been shown in the past decade to be of great importance in geometric processing, image processing, computer graphics, and computational topology. The demand for analyzing large data sets has increased in the last decade. Hence, the parallelization of topological computations needs to be more fully considered. We propose a parallel augmented Reeb graph algorithm on triangulated meshes with and without a boundary. That is, in addition to our parallel algorithm for computing a Reeb graph, we describe a method for extracting the original manifold data from the Reeb graph structure. We demonstrate the running time of our algorithm on standard datasets. As an application, we show how our algorithm can be utilized in mesh segmentation algorithms.
more » « less
4. Computational modeling and simulation of real-world problems, e.g., various applications in the automotive, aerospace, and biomedical industries, often involve geometric objects which are bounded by curved surfaces. The geometric modeling of such objects can be performed via high-order meshes. Such a mesh, when paired with a high-order partial differential equation (PDE) solver, can realize more accurate solution results with a decreased number of mesh elements (in comparison to a low-order mesh). There are several types of high-order mesh generation approaches, such as direct methods, a posteriori methods, and isogeometric analysis (IGA)-based spline modeling approaches. In this paper, we propose a direct, high-order, curvilinear tetrahedral mesh generation method using an advancing front technique. After generating the mesh, we apply mesh optimization to improve the quality and to take advantage of the degrees of freedom available in the initially straight-sided quadratic elements. Our method aims to generate high-quality tetrahedral mesh elements from various types of boundary representations including the cases where no computer-aided design files are available. Such a method is essential, for example, for generating meshes for various biomedical models where the boundary representation is obtained from medical images instead of CAD files. We present several numerical examples of second-order tetrahedral meshes generated using our method based on input triangular surface meshes.
more » « less
5. While computer-aided design is a major part of many modern manufacturing pipelines, the design files typically generated describe raw geometry. Lost in this representation is the procedure by which these designs were generated. In this paper, we present a method for reverse-engineering the process by which 3D models may have been generated, in the language of constructive solid geometry (CSG). Observing that CSG is a formal grammar, we formulate this inverse CSG problem as a program synthesis problem. Our solution is an algorithm that couples geometric processing with state-of-the-art program synthesis techniques. In this scheme, geometric processing is used to convert the mixed discrete and continuous domain of CSG trees to a pure discrete domain where modern program synthesizers excel. We demonstrate the efficiency and scalability of our algorithm on several different examples, including those with over 100 primitive parts. We show that our algorithm is able to find simple programs which are close to the ground truth, and demonstrate our method's applicability in mesh re-editing. Finally, we compare our method to prior state-of-the-art. We demonstrate that our algorithm dominates previous methods in terms of resulting CSG compactness and runtime, and can handle far more complex input meshes than any previous method.
more » « less