skip to main content

Title: Galaxy–galaxy lensing with the DES-CMASS catalogue: measurement and constraints on the galaxy-matter cross-correlation
ABSTRACT The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy–galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy–galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy–galaxy lensing signal, with total S/N = 25.7. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient rcc. By jointly fitting the galaxy–galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain $r_{\rm cc}=1.09^{+0.12}_{-0.11}$ for the scale cut of $4 \, h^{-1}{\rm \,\,Mpc}$ and $r_{\rm cc}=1.06^{+0.13}_{-0.12}$ for $12 \, h^{-1}{\rm \,\,Mpc}$ in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain rcc = 1.06 ± 0.10 for the scale cut of $4 \, h^{-1}{\rm \,\,Mpc}$ and rcc = 1.03 ± 0.11 for $12 \, h^{-1}{\rm \,\,Mpc}$. The resulting more » values of rcc indicate that the lensing signal of DMASS is statistically consistent with the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy–galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
2033 to 2047
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this paper, we demonstrate the feasibility of adopting DMASS as the equivalent of CMASS for a joint analysis of DES and BOSS in the framework of modified gravity. We utilize the angular clustering of the DMASS galaxies, cosmic shear of the DES metacalibration sources, and cross-correlation of the two as data vectors. By jointly fitting the combination of the data with the RSD measurements from the CMASS sample and Planck data, we obtain the constraints on modified gravity parameters $\mu _0=-0.37^{+0.47}_{-0.45}$ and $\Sigma _0=0.078^{+0.078}_{-0.082}$. Our constraints of modified gravity with DMASS are tighter than those with the DES Year 1 redMaGiC sample with the same external data sets by 29 per cent for μ0 and 21 per cent for Σ0, and comparable to the published results of the DES Year 1 modified gravity analysis despite this work using fewer external data sets. This improvement is mainly because the galaxy bias parameter is shared and more tightly constrained by both CMASS and DMASS, effectivelymore »breaking the degeneracy between the galaxy bias and other cosmological parameters. Such an approach to optimally combine photometric and spectroscopic surveys using a photometric sample equivalent to a spectroscopic sample can be applied to combining future surveys having a limited overlap such as DESI and LSST.« less

    We present cosmological parameter constraints based on a joint modelling of galaxy–lensing cross-correlations and galaxy clustering measurements in the SDSS, marginalizing over small-scale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $\sim 6{{\ \rm per\ cent}}$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $\sim 3{{\ \rm per\ cent}}$, from small-scale modelling uncertainties including baryonic physics.

  3. ABSTRACT We compare predictions for galaxy–galaxy lensing profiles and clustering from the Henriques et al. public version of the Munich semi-analytical model (SAM) of galaxy formation and the IllustrisTNG suite, primarily TNG300, with observations from KiDS + GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, and stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_\ast \gt 10^{11}\, \mathrm{ M}_\odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode active galactic nucleus accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high-mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only (χ2 = 1.81 compared to χ2 = 7.79 for the SAM) and locally brightest galaxy samples (χ2 = 3.80 compared to χ2 = 5.01). With added dust corrections to the colours it matches the SDSS clustering signal well for red low-mass galaxies. We find that both themore »SAMs and TNG300 predict $\sim 50\, {{\ \rm per\ cent}}$ excessive lensing signals for intermediate-mass red galaxies with 10.2 < log10M*[M⊙] < 11.2 at $r \approx 0.6\, h^{-1}\, \text{Mpc}$, which require further theoretical development.« less

    The combination of galaxy–galaxy lensing (GGL) and galaxy clustering is a powerful probe of low-redshift matter clustering, especially if it is extended to the non-linear regime. To this end, we use an N-body and halo occupation distribution (HOD) emulator method to model the redMaGiC sample of colour-selected passive galaxies in the Dark Energy Survey (DES), adding parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scale-independent multiplicative lensing bias Alens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile ΔΣ(rp) and the projected galaxy correlation function wp, gg(rp) in the final (Year 6) DES data set over scales $r_p=0.3\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$. For a $3{{\ \rm per\ cent}}$ prior on Alens we forecast precisions of $1.9{{\ \rm per\ cent}}$, $2.0{{\ \rm per\ cent}}$, and $1.9{{\ \rm per\ cent}}$ on Ωm, σ8, and $S_8 \equiv \sigma _8\Omega _m^{0.5}$, marginalized over all halo occupation distribution (HOD) parameters as well as Alens. Adding scales $r_p=0.3\!-\!3.0\, h^{-1} \, \mathrm{Mpc}$ improves the S8 precision by a factor of ∼1.6 relative to a large scale ($3.0\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$) analysis, equivalent to increasing the survey area by a factor of ∼2.6. Sharpening the Alens prior to $1{{\more »\rm per\ cent}}$ further improves the S8 precision to $1.1{{\ \rm per\ cent}}$, and it amplifies the gain from including non-linear scales. Our emulator achieves per cent-level accuracy similar to the projected DES statistical uncertainties, demonstrating the feasibility of a fully non-linear analysis. Obtaining precise parameter constraints from multiple galaxy types and from measurements that span linear and non-linear clustering offers many opportunities for internal cross-checks, which can diagnose systematics and demonstrate the robustness of cosmological results.

    « less

    We describe our non-linear emulation (i.e. interpolation) framework that combines the halo occupation distribution (HOD) galaxy bias model with N-body simulations of non-linear structure formation, designed to accurately predict the projected clustering and galaxy–galaxy lensing signals from luminous red galaxies in the redshift range 0.16 < z < 0.36 on comoving scales 0.6 < rp < 30 $h^{-1} \, \text{Mpc}$. The interpolation accuracy is ≲ 1–2 per cent across the entire physically plausible range of parameters for all scales considered. We correctly recover the true value of the cosmological parameter S8 = (σ8/0.8228)(Ωm/0.3107)0.6 from mock measurements produced via subhalo abundance matching (SHAM)-based light-cones designed to approximately match the properties of the SDSS LOWZ galaxy sample. Applying our model to Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 14 (DR14) LOWZ galaxy clustering and galaxy-shear cross-correlation measurements made with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) imaging, we perform a prototype cosmological analysis marginalizing over wCDM cosmological parameters and galaxy HOD parameters. We obtain a 4.4 per cent measurement of S8 = 0.847 ± 0.037, in 3.5σ tension with the Planck cosmological results of 1.00 ± 0.02. We discuss the possibility of underestimated systematic uncertainties or astrophysical effects that could explain this discrepancy.