skip to main content


Title: Proactive Anti-Eavesdropping With Trap Deployment in Wireless Networks
Due to the open nature of wireless medium, wireless communications are especially vulnerable to eavesdropping attacks. This paper designs a new wireless communication system to deal with eavesdropping attacks. The proposed system can enable a legitimate receiver to get desired messages and meanwhile an eavesdropper to hear ``fake" but meaningful messages by combining confidentiality and deception, thereby confusing the eavesdropper and achieving additional concealment that further protects exchanged messages. Towards this goal, we propose techniques that can conceal exchanged messages by utilizing wireless channel characteristics between the transmitter and the receiver, as well as techniques that can attract an eavesdropper to gradually approach a trap region, where the eavesdropper can get fake messages. We also provide both theoretical and empirical analysis of the established secure channel between the transmitter and the receiver. We develop a prototype system using Universal Software Defined Radio Peripherals (USRPs)Experimental results show that an eavesdropper at a trap location can receive fake information with a bit error rate (BER) close to 0, and the transmitter with multiple antennas can successfully deploy a trap area.  more » « less
Award ID(s):
1948547
NSF-PAR ID:
10313147
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Dependable and Secure Computing
ISSN:
1545-5971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Considered is a multi-channel wireless network for secret communication that uses the signal-to-interference-plus-noise ratio (SINR) as the performance measure. An eavesdropper can intercept encoded messages through a degraded channel of each legitimate transmitter-receiver communication pair. A friendly interferer, on the other hand, may send cooperative jamming signals to enhance the secrecy performance of the whole network. Besides, the state information of the eavesdropping channel may not be known completely. The transmitters and the friendly interferer have to cooperatively decide on the optimal jamming power allocation strategy that balances the secrecy performance with the cost of employing intentional interference, while the eavesdropper tries to maximize her eavesdropping capacity. To solve this problem, we propose and analyze a non-zero-sum game between the network defender and the eavesdropper who can only attack a limited number of channels. We show that the Nash equilibrium strategies for the players are of threshold type. We present an algorithm to find the equilibrium strategy pair. Numerical examples demonstrate the equilibrium and contrast it to baseline strategies. 
    more » « less
  2. Data security plays a crucial role in all areas of data transmission, processing, and storage. This paper considers security in eavesdropping attacks over wireless communication links in aeronautical telemetry systems. Data streams in these systems are often encrypted by traditional encryption algorithms such as the Advanced Encryption Standard (AES). Here, we propose a secure coding technique for the integrated Network Enhanced Telemetry (iNET) communications system that can be coupled with modern encryption schemes. We consider a wiretap scenario where there are two telemetry links between a test article (TA) and a legitimate receiver, or ground station (GS). We show how these two links can be used to transmit both encrypted and unencrypted data streams while keeping both streams secure. A single eavesdropper is assumed who can tap into both links through its noisy channel. Since our scheme does not require encryption of the unencrypted data stream, the proposed scheme offers the ability to reduce the size of the required secret key while keeping the transmitted data secure. 
    more » « less
  3. We proposed and experimentally demonstrated a free-space optical stealth communication system that hides the stealth signal in wide-band spontaneous emission noise. Spontaneous emission light sources have been widely used for illuminations and has been recently deployed for short distance and indoor free-space optical communications, such as LiFi. Since free-space optical communication is a broadcasting network, the users’ privacy is exposed to eavesdropping attacks. In this paper, stealth communication is achieved by taking advantage of the existing properties of spontaneous emission light sources, random phase fluctuations, and protects users’ privacy in free-space communication networks. The keys to hide and recover the stealth signal are the optical delays at the transmitter and receiver. Only by matching the delay length with the pre-shared keys can the authorized receiver recover the stealth signal. Without the right key, the eavesdropper receives a constant power that is the same as illumination light sources and cannot detect the existence of the stealth signal.

     
    more » « less
  4. Filipe, J. ; Ghosh, A. ; Prates, R. O. ; Zhou, L. (Ed.)
    This paper considers a parallel wireless network in which multiple individuals exchange confidential information through independent sender-receiver links. An eavesdropper can intercept encrypted information through a degraded channel of each sender-receiver link. A friendly jammer, by applying interference to the eavesdropping channels, can increase the level of secrecy of the network. The optimal power allocation strategy of the friendly jammer under a power constraint is derived. A convex optimization model is used when all channels are under the threat of an eavesdropping attack and a non-zero sum game model is analyzed when the eavesdropper can only attack a limited quantity of channels. 
    more » « less
  5. Existing research work has identified a new class of attacks that can eavesdrop on the keystrokes in a non-invasive way without infecting the target computer to install malware. The common idea is that pressing a key of a keyboard can cause a unique and subtle environmental change, which can be captured and analyzed by the eavesdropper to learn the keystrokes. For these attacks, however, a training phase must be accomplished to establish the relationship between an observed environmental change and the action of pressing a specific key. This significantly limits the impact and practicality of these attacks. In this paper, we discover that it is possible to design keystroke eavesdropping attacks without requiring the training phase. We create this attack based on the channel state information extracted from the wireless signal. To eavesdrop on keystrokes, we establish a mapping between typing each letter and its respective environmental change by exploiting the correlation among observed changes and known structures of dictionary words. To defend against this attack, we propose a reactive jamming mechanism that launches the jamming only during the typing period. Experimental results on software-defined radio platforms validate the impact of the attack and the performance of the defense. 
    more » « less