skip to main content


Title: Evaluation of Genomic Sequence-Based Growth Rate Methods for Synchronized Synechococcus Cultures
ABSTRACT Standard methods for calculating microbial growth rates (μ) through the use of proxies, such as in situ fluorescence, cell cycle, or cell counts, are critical for determining the magnitude of the role bacteria play in marine carbon (C) and nitrogen (N) cycles. Taxon-specific growth rates in mixed assemblages would be useful for attributing biogeochemical processes to individual species and understanding niche differentiation among related clades, such as found in Synechococcus and Prochlorococcus . We tested three novel DNA sequencing-based methods (iRep, bPTR, and GRiD) for evaluating the growth of light-synchronized Synechococcus cultures under different light intensities and temperatures. In vivo fluorescence and cell cycle analysis were used to obtain standard estimates of growth rate for comparison with those of the sequence-based methods (SBM). None of the SBM values were correlated with growth rates calculated by standard techniques despite the fact that all three SBM were correlated with the percentage of cells in S phase (DNA replication) over the diel cycle. Inaccuracy in determining the time of maximum DNA replication is unlikely to account entirely for the absence of a relationship between SBM and growth rate, but the fact that most microbes in the surface ocean exhibit some degree of diel cyclicity is a caution for application of these methods. SBM correlate with DNA replication but cannot be interpreted quantitatively in terms of growth rate. IMPORTANCE Small but abundant, cyanobacterial strains such as the photosynthetic Synechococcus spp. are important because they contribute significantly to primary productivity in the ocean. These bacteria generate oxygen and provide biologically available carbon, which is essential for organisms at higher trophic levels. The small size and diversity of natural microbial assemblages mean that taxon-specific activities (e.g., growth rate) are difficult to obtain in the field. It has been suggested that sequence-based methods (SBM) may be able to solve this problem. We find, however, that SBM can detect DNA replication and are correlated with phases of the cell cycle but cannot be interpreted in terms of absolute growth rate for Synechococcus cultures growing under a day-night cycle, like that experienced in the ocean.  more » « less
Award ID(s):
1747511
NSF-PAR ID:
10313194
Author(s) / Creator(s):
; ;
Editor(s):
Glass, Jennifer B.
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
88
Issue:
1
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Picophytoplankton populations [Prochlorococcus,Synechococcus(SYN), and picoeukaryotes] are dominant primary producers in the open ocean and projected to become more important with climate change. Their fates can vary, however, with microbial food web complexities. In the California Current Ecosystem, picophytoplankton biomass and abundance peak in waters of intermediate productivity and decrease at higher production. Using experimental data from eight cruises crossing the pronounced CCE trophic gradient, we tested the hypothesis that these declines are driven by intensified grazing on heterotrophic bacteria (HBAC) passed to similarly sized picophytoplankton via shared predators. Results confirm previously observed distributions as well as significant increases in bacterial abundance, cell growth, and grazing mortality with primary production. Mortalities of picophytoplankton, however, diverge from the bacterial mortality trend such that relative grazing rates on SYN compared to HBAC decline by 12-fold between low and high productivity waters. The large shifts in mortality rate ratios for coexisting populations are not explained by size variability but rather suggest high selectivity of grazer assemblages or tightly coupled tradeoffs in microbial growth advantages and grazing vulnerabilities. These findings challenge the long-held view that protistan grazing mainly determines overall biomass of microbial communities while viruses uniquely regulate diversity by “killing the winners”.

     
    more » « less
  2. Abstract The highly stratified, oligotrophic regions of the oceans are predominantly nitrogen limited in the surface ocean and light limited at the deep chlorophyll maximum (DCM). Hence, determining light and nitrogen co-limitation patterns for diverse phytoplankton taxa is crucial to understanding marine primary production throughout the euphotic zone. During two cruises in the deep-water Gulf of Mexico, we measured primary productivity (H13CO3−), nitrate uptake (15NO3−) and ammonium uptake (15NH4+) throughout the water column. Primary productivity declined with depth from the mixed layer to the DCM, averaging 27.1 mmol C m−2 d−1. The fraction of growth supported by NO3− was consistently low, with upper euphotic zone values ranging from 0.01 to 0.14 and lower euphotic zone values ranging from 0.03 to 0.44. Nitrate uptake showed strong diel patterns (maximum during the day), whereas ammonium uptake exhibited no diel variability. To parameterize taxon-specific phytoplankton nutrient and light utilization, we used a data assimilation approach (Bayesian Markov Chain Monte Carlo) including primary productivity, nutrient uptake and taxon-specific growth rate measurements. Parameters derived from this analysis define distinct niches for five phytoplankton taxa (Prochlorococcus, Synechococcus, diatoms, dinoflagellates and prymnesiophytes) and may be useful for constraining biogeochemical models of oligotrophic open-ocean systems. 
    more » « less
  3. Abstract

    Our understanding of in situ microbial physiology is primarily based on physiological characterization of fast-growing and readily-isolatable microbes. Microbial enrichments to obtain novel isolates with slower growth rates or physiologies adapted to low nutrient environments are plagued by intrinsic biases for fastest-growing species when using standard laboratory isolation protocols. New cultivation tools to minimize these biases and enrich for less well-studied taxa are needed. In this study, we developed a high-throughput bacterial enrichment platform based on single cell encapsulation and growth within double emulsions (GrowMiDE). We showed that GrowMiDE can cultivate many different microorganisms and enrich for underrepresented taxa that are never observed in traditional batch enrichments. For example, preventing dominance of the enrichment by fast-growing microbes due to nutrient privatization within the double emulsion droplets allowed cultivation of slower-growing Negativicutes and Methanobacteria from stool samples in rich media enrichment cultures. In competition experiments between growth rate and growth yield specialist strains, GrowMiDE enrichments prevented competition for shared nutrient pools and enriched for slower-growing but more efficient strains. Finally, we demonstrated the compatibility of GrowMiDE with commercial fluorescence-activated cell sorting (FACS) to obtain isolates from GrowMiDE enrichments. Together, GrowMiDE + DE-FACS is a promising new high-throughput enrichment platform that can be easily applied to diverse microbial enrichments or screens.

     
    more » « less
  4. Abstract

    Heterotrophic bacteria in the surface ocean play a critical role in the global carbon cycle and the magnitude of this role depends on their growth rates. Although methods for determining bacterial community growth rates based on incorporation of radiolabeled thymidine and leucine are widely accepted, they are based on a number of assumptions and simplifications. We sought to independently assess these methods by comparing bacterial growth rates to turnover rates of bacterial membranes using previously published methods in a range of open‐ocean settings. We found that turnover rates for heterotrophic bacterial phospholipids averaged 0.80 ± 0.35 d−1. This was supported by independent measurements of turnover rates of a membrane‐bound pigment in photoheterotrophic bacteria, bacteriochlorophyll a(0.85 ± 0.09 d−1). By contrast, bacterial growth rates measured by uptake of radiolabeled thymidine and leucine were 0.12 ± 0.08 d−1, well within the range expected from the literature. We explored whether the discrepancies between phospholipid turnover rates and bacterial growth rate could be explained by membrane recycling/remodeling and other factors, but were left to conclude that the radiolabeled thymidine and leucine incorporation methods substantially underestimated actual bacterial growth rates. We use a simple model to show that the faster bacterial growth rates we observed can be accommodated within the constraints of the microbial carbon budget if bacteria are smaller than currently thought, grow with greater efficiency, or some combination of these two factors.

     
    more » « less
  5. Abstract

    Mixotrophic nanoflagellates can account for more than half of the bacterivory in the sunlit ocean, yet very little is known about their ecophysiology. Here, we characterize the grazing ecology of an open‐ocean mixotroph in the genusFlorenciella(class Dictyochophyceae). Members of this class were indirectly implicated as major consumers ofProchlorococcusandSynechococcusin the oligotrophic North Pacific Subtropical Gyre, but their phagotrophic capabilities have never been investigated. Our studies showed thatFlorenciellareadily consumedProchlorococcus,Synechococcus, and heterotrophic bacteria, and that the ingested prey relieved nutrient limitations on growth.Florenciellagrew faster (3 d−1) in nitrogen‐deplete medium given sufficient liveSynechococcus, than in nitrogen‐replete K medium (2 d−1), but it did not grow in continuous darkness. Grazing rates were substantially higher under nutrient limitation and showed a hint of diel variability, with rates tending to be highest near the end of the light period. An apparent trade‐off between the maximum clearance rate (5 nLFlorenciella−1h−1) and the maximum ingestion rate (up to ∼ 10 prey cellsFlorenciella−1h−1) across experiments suggests that grazing behavior may also vary in response to prey concentration. If the observed grazing rates are representative of other open‐ocean mixotrophs, their collective activity could account for a significant fraction of the daily cyanobacterial mortality. This study provides essential parameters for understanding the grazing ecology of a common marine mixotroph and the first characterization of mixotrophic nanoflagellate functional responses when feeding on unicellular cyanobacteria, the dominant marine primary producers in the oligotrophic ocean.

     
    more » « less