skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bounded Abstract Effects
Effect systems have been a subject of active research for nearly four decades, with the most notable practical example being checked exceptions in programming languages such as Java. While many exception systems support abstraction, aggregation, and hierarchy (e.g., via class declaration and subclassing mechanisms), it is rare to see such expressive power in more generic effect systems. We designed an effect system around the idea of protecting system resources and incorporated our effect system into the Wyvern programming language. Similar to type members, a Wyvern object can have effect members that can abstract lower-level effects, allow for aggregation, and have both lower and upper bounds, providing for a granular effect hierarchy. We argue that Wyvern’s effects capture the right balance of expressiveness and power from the programming language design perspective. We present a full formalization of our effect-system design, showing that it allows reasoning about authority and attenuation. Our approach is evaluated through a security-related case study.  more » « less
Award ID(s):
1852260
PAR ID:
10313204
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Programming Languages and Systems
Volume:
44
Issue:
1
ISSN:
0164-0925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many online communities rely on postpublication moderation where contributors-even those that are perceived as being risky-are allowed to publish material immediately and where moderation takes place after the fact. An alternative arrangement involves moderating content before publication. A range of communities have argued against prepublication moderation by suggesting that it makes contributing less enjoyable for new members and that it will distract established community members with extra moderation work. We present an empirical analysis of the effects of a prepublication moderation system called FlaggedRevs that was deployed by several Wikipedia language editions. We used panel data from 17 large Wikipedia editions to test a series of hypotheses related to the effect of the system on activity levels and contribution quality. We found that the system was very effective at keeping low-quality contributions from ever becoming visible. Although there is some evidence that the system discouraged participation among users without accounts, our analysis suggests that the system's effects on contribution volume and quality were moderate at most. Our findings imply that concerns regarding the major negative effects of prepublication moderation systems on contribution quality and project productivity may be overstated. 
    more » « less
  2. Hicks, Michael (Ed.)
    We propose a novel approach to soundly combining linear types with multi-shot effect handlers. Linear type systems statically ensure that resources such as file handles and communication channels are used exactly once. Effect handlers provide a rich modular programming abstraction for implementing features ranging from exceptions to concurrency to backtracking. Whereas conventional linear type systems bake in the assumption that continuations are invoked exactly once, effect handlers allow continuations to be discarded (e.g. for exceptions) or invoked more than once (e.g. for backtracking). This mismatch leads to soundness bugs in existing systems such as the programming language Links, which combines linearity (for session types) with effect handlers. We introduce control-flow linearity as a means to ensure that continuations are used in accordance with the linearity of any resources they capture, ruling out such soundness bugs. We formalise the notion of control-flow linearity in a System F-style core calculus Feff∘, equipped with linear types, an effect type system, and effect handlers. We define a linearity-aware semantics in order to formally prove that Feff∘ preserves the integrity of linear values in the sense that no linear value is discarded or duplicated. In order to show that control-flow linearity can be made practical, we adapt Links based on the design of Feff∘, in doing so fixing a long-standing soundness bug. Finally, to better expose the potential of control-flow linearity, we define an ML-style core calculus Qeff∘, based on qualified types, which requires no programmer provided annotations, and instead relies entirely on type inference to infer control-flow linearity. Both linearity and effects are captured by qualified types. Qeff∘ overcomes a number of practical limitations of Feff∘, supporting abstraction over linearity, linearity dependencies between type variables, and a much more fine-grained notion of control-flow linearity. 
    more » « less
  3. Writing certifiably correct system software is still very labor-intensive, and current programming languages are not well suited for the task. Proof assistants work best on programs written in a high-level functional style, while operating systems need low-level control over the hardware. We present DeepSEA, a language which provides support for layered specification and abstraction refinement, effect encapsulation and composition, and full equational reasoning. A single DeepSEA program is automatically compiled into a certified ``layer'' consisting of a C program (which is then compiled into assembly by CompCert), a low-level functional Coq specification, and a formal (Coq) proof that the C program satisfies the specification. Multiple layers can be composed and interleaved with manual proofs to ascribe a high-level specification to a program by stepwise refinement. We evaluate the language by using it to reimplement two existing verified programs: a SHA-256 hash function and an OS kernel page table manager. This new style of programming language design can directly support the development of correct-by-construction system software. 
    more » « less
  4. Persistent memory presents a great opportunity for crash-consistent computing in large-scale computing systems. The ability to recover data upon power outage or crash events can significantly improve the availability of large-scale systems, while improving the performance of persistent data applications (e.g., database applications). However, persistent memory suffers from high write latency and requires specific programming model (e.g., Intel’s PMDK) to guarantee crash consistency, which results in long latency to persist data. To mitigate these problems, recent standards advocate for sufficient back-up power that can flush the whole cache hierarchy to the persistent memory upon detection of an outage, i.e., extending the persistence domain to include the cache hierarchy. In the secure NVM with extended persistent domain(EPD), in addition to flushing the cache hierarchy, extra actions need to be taken to protect the flushed cache data. These extra actions of secure operation could cause significant burden on energy costs and battery size. We demonstrate that naive implementations could lead to significantly expanding the required power holdup budget (e.g., 10.3x more operations than EPD system without secure memory support). The significant overhead is caused by memory accesses of secure metadata. In this paper, we present Horus, a novel EPD-aware secure memory implementation. Horus reduces the overhead during draining period of EPD system by reducing memory accesses of secure metadata. Experiment result shows that Horus reduces the draining time by 5x, compared with the naive baseline design. 
    more » « less
  5. We present a gradually typed language, GrEff, with effects and handlers that supports migration from unchecked to checked effect typing. This serves as a simple model of the integration of an effect typing discipline with an existing effectful typed language that does not track fine-grained effect information. Our language supports a simple module system to model the programming model of gradual migration from unchecked to checked effect typing in the style of Typed Racket. The surface language GrEff is given semantics by elaboration to a core language Core GrEff. We equip Core GrEff with an inequational theory for reasoning about the semantic error ordering and desired program equivalences for programming with effects and handlers. We derive an operational semantics for the language from the equations provable in the theory. We then show that the theory is sound by constructing an operational logical relations model to prove the graduality theorem. This extends prior work on embedding-projection pair models of gradual typing to handle effect typing and subtyping. 
    more » « less