- Award ID(s):
- 1942508
- PAR ID:
- 10313228
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 17
- Issue:
- 6
- ISSN:
- 1744-683X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to “dial-in” the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in deformation mechanism providing enhanced performance are unknown. Here, in situ small-angle X-ray scattering (SAXS) measurements during uniaxial extension reveal distinct deformation mechanisms between a commercially available linear poly(styrene)-poly(butadiene)-poly(styrene) (SBS) triblock copolymer and the grafted SBS version containing grafted poly(styrene) (PS) chains from the poly(butadiene) (PBD) mid-block. The neat SBS (φSBS = 100%) sample deforms congruently with the macroscopic dimensions with the domain spacing between spheres increasing and decreasing along and traverse to the stretch direction, respectively. At high extensions, end segment pullout from the PS-rich domains is detected, which is indicated by a disordering of SBS. Conversely, the PS-grafted SBS that is 30 vol% SBS and 70% styrene (φSBS = 30%) exhibits a lamellar morphology and in situ SAXS measurements reveal an unexpected deformation mechanism. During deformation there are two simultaneous processes: significant lamellar domain rearrangement to preferentially orient the lamellae planes parallel to the stretch direction and crazing. The samples whiten at high strains as expected for crazing, which corresponds with the emergence of features in the two-dimensional SAXS pattern during stretching consistent with fibril-like structures that bridge the voids in crazes. The significant domain rearrangement in the grafted copolymers is attributed to the new junctions formed across multiple PS domains by the grafts of a single chain. The in situ SAXS measurements provide insights into the enhanced mechanical properties of grafted copolymers that arise through improved physical crosslinking that leads to nanostructured domain reorientation for self-reinforcement and craze formation where fibrils help to strengthen the polymer.more » « less
-
A laboratory-synthesized triblock copolymer poly(ethylene oxide-b-acrylic acid-b-styrene) (PEG-PAA-PS) was used as a template to synthesize hollow BaCO3 nanoparticles (BC-NPs). The triblock copolymer was synthesized using reversible addition–fragmentation chain transfer radical polymerization. The triblock copolymer has a molecular weight of 1.88 × 104 g/mol. Transmission electron microscopy measurements confirm the formation of spherical micelles with a PEG corona, PAA shell, and PS core in an aqueous solution. Furthermore, the dynamic light scattering experiment revealed the electrostatic interaction of Ba2+ ions with an anionic poly(acrylic acid) block of the micelles. The controlled precipitation of BaCO3 around spherical polymeric micelles followed by calcination allows for the synthesis of hollow BC-NPs with cavity diameters of 15 nm and a shell thickness of 5 nm. The encapsulation and release of methotrexate from hollow BC-NPs at pH 7.4 was studied. The cell viability experiments indicate the possibility of BC-NPs maintaining biocompatibility for a prolonged time.more » « less
-
Abstract Block copolymer brushes are of great interest due to their rich phase behavior and value‐added properties compared to homopolymer brushes. Traditional synthesis involves grafting‐to and grafting‐from methods. In this work, a recently developed “polymer‐single‐crystal‐assisted‐grafting‐to” method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)‐
b ‐poly(l ‐lactide)‐b ‐poly(3‐(triethoxysilyl)propyl methacrylate) (PEO‐b ‐PLLA‐b ‐PTESPMA) is synthesized with PLLA as the brush morphology‐directing component and PTESPMA as the anchoring block. PEO‐b ‐PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm−2from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well‐defined block copolymer brushes. -
The physical properties of an ABA triblock copolymer-based thermoplastic elastomer, containing a poly(lauryl methacrylate-co-methacrylic acid) midblock and poly(methyl methacrylate) endblocks, were enhanced through neutralization of the methacrylic acid (MAA) repeat units with NaOH to form ionic interactions in the midblock. Rheological properties of the midblock and mechanical properties of the triblock copolymer were investigated as functions of acid (MAA) and ion content. Midblock relaxation times (τ) increased with increasing acid and ion content, however the activation energy extracted from an Arrhenius analysis appeared constant for all acid and ion contents. Meanwhile, the factors of enhancement of the strain at break and tensile strength (as compared to the baseline polymer without ionic interactions or hydrogen bonding) collapsed onto master curves when plotted as functions of log τ, indicating the mechanical behavior of the triblock copolymer could be tuned through varying the relaxation time of the midblock. The tensile strength increased by as much as a factor of 17 times greater than that of the baseline polymer. More moderate enhancements were observed in the strain at break, with the maximum strain at break occurring at intermediate relaxation times. This suggests that midblock chain dynamics are a governing factor for the mechanical property enhancements, due to the effects of the ionic aggregates and chain mobility on stress dissipation under tensile deformation.more » « less
-
ABSTRACT Mechanical properties including the failure behavior of physically assembled gels or physical gels are governed by their network structure. To investigate such behavior, we consider a physical gel system consisting of poly(styrene)‐poly(isoprene)‐poly(styrene)[PS‐PI‐PS] in mineral oil. In these gels, the endblock (PS) molecular weights are not significantly different, whereas, the midblock (PI) molecular weight has been varied such that we can access gels with and without midblock entanglement. Small angle X‐ray scattering data reveals that the gels are composed of collapsed PS aggregates connected by PI chains. The gelation temperature has been found to be a function of the endblock concentration. Tensile tests display stretch‐rate dependent modulus at high strain for the gels with midblock entanglement. Creep failure behavior has also been found to be influenced by the entanglement. Fracture experiments with predefined cracks show that the energy release rate scales linearly with the crack‐tip velocity for all gels considered here. In addition, increase of midblock chain length resulted in higher viscous dissipation leading to a higher energy release rate. The results provide an insight into how midblock entanglement can possibly affect the mechanical properties of physically assembled triblock copolymer gels in a midblock selective solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.
2019 ,57 , 1014–1026