skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Live Coding: A Review of the Literature
One of the goals of computing education research is to document the potential strengths and weaknesses of contemporary teaching methods in computing. Live coding has recently gained attention as one of the best practices for teaching programming. To offer a more comprehensive understanding of the existing body of research about live coding, we reviewed papers in computing education research that investigated the value of live coding in an educational setting. We categorized each paper based on (1) how it defines live coding, (2) whether its version of live coding could be considered active learning, (3) the type of study conducted, (4) types of data collected and the data analysis methods used, (5) evidence provided for the effectiveness of live coding, (6) reported benefits and drawbacks of live coding, and (7) reported theoretical frameworks used to explain the basis, effects or goals of live coding. We found that although live coding has been recommended as one of the best practices for teaching programming, there is a lack of empirical evidence to support claims about the effectiveness of live coding on student learning. Finally, we discuss the implications of our findings and suggest future research directions that could develop a more holistic understanding of this pedagogical technique.  more » « less
Award ID(s):
2044473
PAR ID:
10313400
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
26th ACM Conference on Innovation and Technology in Computer Science Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clark, Mary Diane (Ed.)
    The COVID-19 pandemic disrupted scientific research, teaching, and learning in higher education and forced many institutions to explore new modalities in response to the abrupt shift to remote learning. Accordingly, many colleges and universities struggled to provide the training, technology, and best practices to support faculty and students, especially those at historically disadvantaged and underrepresented institutions. In this study we investigate different remote learning modalities to improve and enhance research education training for faculty and students. We specifically focus on Responsible and Ethical Conduct of Research (RECR) and research mentoring content to help address the newly established requirements of the National Science Foundation for investigators. To address this need we conducted a workshop to determine the effectiveness of three common research education modalities: Live Lecture, Podcast, and Reading. The Live Lecture sessions provided the most evidence of learning based on the comparison between pre- and post-test results, whereas the Podcast format was well received but produced a slight (and non-significant) decline in scores between the pre- and post-tests. The Reading format showed no significant improvement in learning. The results of our workshop illuminate the effectiveness and obstacles associated with various remote learning modalities, enabling us to pinpoint areas that require additional refinement and effort, including the addition of interactive media in Reading materials. 
    more » « less
  2. While student-centered learning has been shown to improve learning experiences in the engineering classroom, adoption of these evidence-based strategies has been slow. Research has shown that faculty beliefs about teaching and limited exposure to formal training influence effective implementation of evidenced-based instructional practices. Thus, in an effort to explore ways to implement long-term instructional change in engineering higher education, a graduate-level course, the Instructional Incubator (I2), was developed to expose future educators to instructional design and evidence-based practices. In the I2, student participants developed new biomedical engineering short-courses in an active learning classroom. For the first two iterations of the I2, we examined how this immersive experience influenced participants’ perceived teaching abilities and understanding before and after enrolling in the I2. Both I2 cohorts reported an increase in knowledge of engineering education related terms and showed a shift away from behaviorist and cognitive beliefs about teaching and learning. Introduction 
    more » « less
  3. The computing education research community now has at least 40 years of published research on teaching ethics in higher education. To examine the state of our field, we present a systematic literature review of papers in the Association for Computing Machinery computing education venues that describe teaching ethics in higher-education computing courses. Our review spans all papers published to SIGCSE, ICER, ITiCSE, CompEd, Koli Calling, and TOCE venues through 2022, with 100 papers fulfilling our inclusion criteria. Overall, we found a wide variety in content, teaching strategies, challenges, and recommendations. The majority of the papers did not articulate a conception of “ethics,” and those that did used many different conceptions, from broadly applicable ethical theories to social impact to specific computing application areas (e.g., data privacy and hacking). Instructors used many different pedagogical strategies (e.g., discussions, lectures, assignments) and formats (e.g., stand-alone courses, incorporated within a technical course). Many papers identified measuring student knowledge as a particular challenge, and 59% of papers included mention of assessments or grading. Of the 69% of papers that evaluated their ethics instruction, most used student self-report surveys, course evaluations, and instructor reflections. While many papers included calls for more ethics content in computing, specific recommendations were rarely broadly applicable, preventing a synthesis of guidelines. To continue building on the last 40 years of research and move toward a set of best practices for teaching ethics in computing, our community should delineate our varied conceptions of ethics, examine which teaching strategies are best suited for each, and explore how to measure student learning. 
    more » « less
  4. Powell, Roger (Ed.)
    Abstract In the past 30 years, leaders in undergraduate education have called for transformations in science pedagogy to reflect the process of science as well as to develop professional skills, apply new and emerging technologies, and to provide more hands-on experience. These recommendations suggest teaching strategies that incorporate active learning methods that consistently increase learning, conceptual understanding, integration of subject knowledge with skill development, retention of undergraduate students in science, technology, engineering, and mathematics (STEM) majors, and inclusivity. To gain insight into current practices and pedagogy we surveyed members of the American Society of Mammalogists in 2021. The survey consisted of both fixed-response questions (e.g., multiple-choice or Likert-scale) and open-ended questions, each of which asked instructors about the structure and content of a Mammalogy or field Mammalogy course. In these courses, we found that lecturing was still a primary tool for presenting course content or information (x¯= 65% of the time); nonetheless, most instructors reported incorporating other teaching strategies ranging from pausing lectures for students to ask questions to incorporating active learning methods, such as debates or case studies. Most instructors reported incorporating skill development and inclusive teaching practices, and 64% reported that they perceived a need to change or update their Mammalogy courses or their teaching approaches. Overall, our results indicate that Mammalogy instructors have a strong interest in training students to share their appreciation for mammals and are generally engaged in efforts to increase the effectiveness of their teaching through the incorporation of more student-centered approaches to teaching and learning. 
    more » « less
  5. Problem. To investigate and identify promising practices in eq- uitable K-12 and tertiary computer science (CS) education, the capacity for education researchers to conduct this research must be rapidly built globally. Simultaneously, concerns have arisen over the last few years about the quality of research that is being con- ducted and the lack of research that supports teaching al students computing. Research Question. Our research question for our study was: In what ways can existing research standards and practices inform methodologically sound, equity-enabling computing education research? Methodology. We conducted a concept analysis using existing re- search and various standards (e.g. European Educational Research Association, Australian Education Research Organisation, Ameri- can Psychological Association). We then synthesised key features ni the context of equity-focused K-12 computing education research. Findings. We present aset of guidelines for general research design that takes into account best practices across the standards that are infused with equity-enabling research practices. Implications. Our guidelines wil directly impact future equitable computing education research by providing guidance on conducting high-quality research such that the findings can be aggregated and impact future policy with evidence-based results. Because we have crafted these guidelines to be broadly applicable across a variety of settings, we believe that they will be useful to researchers operating in a variety of contexts. 
    more » « less