- Award ID(s):
- 1852583
- PAR ID:
- 10313628
- Date Published:
- Journal Name:
- 9th International Conference on Affective Computing and Intelligent Interaction (ACII)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Intelligent tutoring systems have proven very effective at teaching hard skills such as math and science, but less research has examined how to teach “soft” skills such as negotiation. In this paper, we introduce an effective approach to teaching negotiation tactics. Prior work showed that students can improve through practice with intelligent negotiation agents. We extend this work by proposing general methods of assessment and feedback that could be applied to a variety of such agents. We evaluate these techniques through a human subject study. Our study demonstrates that personalized feedback improves students’ use of several foundational tactics.more » « less
-
The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-68017-6_33Ekman, P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. https://doi.org/10.1080/00332747.1969.11023575 Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208. http://dx.doi.org/10.1162/
-
null (Ed.)Articulation, emotion, and personality play strong roles in the orofacial movements. To improve the naturalness and expressiveness of virtual agents(VAs), it is important that we carefully model the complex interplay between these factors. This paper proposes a conditional generative adversarial network, called conditional sequential GAN(CSG), which learns the relationship between emotion, lexical content and lip movements in a principled manner. This model uses a set of spectral and emotional speech features directly extracted from the speech signal as conditioning inputs, generating realistic movements. A key feature of the approach is that it is a speech-driven framework that does not require transcripts. Our experiments show the superiority of this model over three state-of-the-art baselines in terms of objective and subjective evaluations. When the target emotion is known, we propose to create emotionally dependent models by either adapting the base model with the target emotional data (CSG-Emo-Adapted), or adding emotional conditions as the input of the model(CSG-Emo-Aware). Objective evaluations of these models show improvements for the CSG-Emo-Adapted compared with the CSG model, as the trajectory sequences are closer to the original sequences. Subjective evaluations show significantly better results for this model compared with the CSG model when the target emotion is happiness.more » « less
-
null (Ed.)Specifying a normative multiagent system (nMAS) is challenging, because different agents often have conflicting requirements. Whereas existing approaches can resolve clear-cut conflicts, tradeoffs might occur in practice among alternative nMAS specifications with no apparent resolution. To produce an nMAS specification that is acceptable to each agent, we model the specification process as a negotiation over a set of norms. We propose an agent-based negotiation framework, where agents’ requirements are represented as values (e.g., patient safety, privacy, and national security), and an agent revises the nMAS specification to promote its values by executing a set of norm revision rules that incorporate ontology-based reasoning. To demonstrate that our framework supports creating a transparent and accountable nMAS specification, we conduct an experiment with human participants who negotiate against our agent. Our findings show that our negotiation agent reaches better agreements (with small p -value and large effect size) faster than a baseline strategy. Moreover, participants perceive that our agent enables more collaborative and transparent negotiations than the baseline (with small p -value and large effect size in particular settings) toward reaching an agreement.more » « less
-
Situations and events evoke emotions in humans, but to what extent do they inform the prediction of emotion detection models? This work investigates how well human-annotated emotion triggers correlate with features that models deemed salient in their prediction of emotions. First, we introduce a novel dataset EmoTrigger, consisting of 900 social media posts sourced from three different datasets; these were annotated by experts for emotion triggers with high agreement. Using EmoTrigger, we evaluate the ability of large language models (LLMs) to identify emotion triggers, and conduct a comparative analysis of the features considered important for these tasks between LLMs and fine-tuned models. Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.more » « less