skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Modulating fMRI Time-Series on Fluid Ability and Fluid Intelligence for Healthy Humans
This paper investigates the effect of filtering (or modulating) the functional magnetic resonance imaging (fMRI) time-series on intelligence metrics predicted using dynamic functional connectivity (dFC). Thirteen brain regions that have highest correlation with intelligence are selected and their corresponding time-series are filtered. Using filtered time-series, the modified intelligence metrics are predicted. This experiment investigates whether modulating the time-series of one or two regions of the brain will increase or decrease the fluid ability and fluid intelligence among healthy humans. Two sets of experiments are performed. In the first case, each of the thirteen regions is separately filtered using four different digital filters with passbands: i) 0 - 0.25π, ii) 0.25π - 0.5π, iii) 0.5π - 0.75π, and iv) 0.75π – π, respectively. In the second case, two of the thirteen regions are filtered simultaneously using a low-pass filter of passband 0 - 0.25π. In both cases, the predicted intelligence declined for 45-65% of the subjects after filtering in comparison with the ground truths. In the first case, the low-pass filtering process had the highest predicted intelligence among the four filters. In the second case, it was noticed that the filtering of two regions simultaneously resulted in a higher prediction of intelligence for over 80% of the subjects compared to low-pass filtering of a single region.  more » « less
Award ID(s):
1954749
PAR ID:
10313640
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates the effect of filtering (or modulating) the functional magnetic resonance imaging (fMRI) time-series on intelligence metrics predicted using dynamic functional connectivity (dFC). Thirteen brain regions that have highest correlation with intelligence are selected and their corresponding time-series are filtered. Using filtered time-series, the modified intelligence metrics are predicted. This experiment investigates whether modulating the time-series of one or two regions of the brain will increase or decrease the fluid ability and fluid intelligence among healthy humans. Two sets of experiments are performed. In the first case, each of the thirteen regions is separately filtered using four different digital filters with passbands: i) 0 - 0.25π, ii) 0.25π - 0.5π, iii) 0.5π - 0.75π, and iv) 0.75π – π, respectively. In the second case, two of the thirteen regions are filtered simultaneously using a low-pass filter of passband 0 - 0.25π. In both cases, the predicted intelligence declined for 45-65% of the subjects after filtering in comparison with the ground truths. In the first case, the low-pass filtering process had the highest predicted intelligence among the four filters. In the second case, it was noticed that the filtering of two regions simultaneously resulted in a higher prediction of intelligence for over 80% of the subjects compared to low-pass filtering of a single region. 
    more » « less
  2. Abstract There is growing interest in discovering interpretable, closed‐form equations for subgrid‐scale (SGS) closures/parameterizations of complex processes in Earth systems. Here, we apply a common equation‐discovery technique with expansive libraries to learn closures from filtered direct numerical simulations of 2D turbulence and Rayleigh‐Bénard convection (RBC). Across common filters (e.g., Gaussian, box), we robustly discover closures of the same form for momentum and heat fluxes. These closures depend on nonlinear combinations of gradients of filtered variables, with constants that are independent of the fluid/flow properties and only depend on filter type/size. We show that these closures are the nonlinear gradient model (NGM), which is derivable analytically using Taylor‐series. Indeed, we suggest that with common (physics‐free) equation‐discovery algorithms, for many common systems/physics, discovered closures are consistent with the leading term of the Taylor‐series (except when cutoff filters are used). Like previous studies, we find that large‐eddy simulations with NGM closures are unstable, despite significant similarities between the true and NGM‐predicted fluxes (correlations >0.95). We identify two shortcomings as reasons for these instabilities: in 2D, NGM produces zero kinetic energy transfer between resolved and subgrid scales, lacking both diffusion and backscattering. In RBC, potential energy backscattering is poorly predicted. Moreover, we show that SGS fluxes diagnosed from data, presumed the “truth” for discovery, depend on filtering procedures and are not unique. Accordingly, to learn accurate, stable closures in future work, we propose several ideas around using physics‐informed libraries, loss functions, and metrics. These findings are relevant to closure modeling of any multi‐scale system. 
    more » « less
  3. Abstract Resting-state functional connectivity (RSFC) has been widely adopted for individualized trait prediction. However, multiple confounding factors may impact the predicted brain-behavior relationships. In this study, we investigated the impact of 4 confounding factors including time series length, functional connectivity (FC) type, brain parcellation choice, and variance of the predicted target. The data from Human Connectome Project including 1,206 healthy subjects were employed, with 3 cognitive traits including fluid intelligence, working memory, and picture vocabulary ability as the prediction targets. We compared the prediction performance under different settings of these 4 factors using partial least square regression. Results demonstrated appropriate time series length (300 time points) and brain parcellation (independent component analysis, ICA100/200) can achieve better prediction performance without too much time consumption. FC calculated by Pearson, Spearman, and Partial correlation achieves higher accuracy and lower time cost than mutual information and coherence. Cognitive traits with larger variance among subjects can be better predicted due to the well elaboration of individual variability. In addition, the beneficial effects of increasing scan duration to prediction partially arise from the improved test–retest reliability of RSFC. Taken together, the study highlights the importance of determining these factors in RSFC-based prediction, which can facilitate standardization of RSFC-based prediction pipelines going forward. 
    more » « less
  4. Abstract This paper presents a novel application of convolutional neural network (CNN) models for filtering the intraseasonal variability of the tropical atmosphere. In this deep learning filter, two convolutional layers are applied sequentially in a supervised machine learning framework to extract the intraseasonal signal from the total daily anomalies. The CNN-based filter can be tailored for each field similarly to fast Fourier transform filtering methods. When applied to two different fields (zonal wind stress and outgoing longwave radiation), the index of agreement between the filtered signal obtained using the CNN-based filter and a conventional weight-based filter is between 95% and 99%. The advantage of the CNN-based filter over the conventional filters is its applicability to time series with the length comparable to the period of the signal being extracted. Significance StatementThis study proposes a new method for discovering hidden connections in data representative of tropical atmosphere variability. The method makes use of an artificial intelligence (AI) algorithm that combines a mathematical operation known as convolution with a mathematical model built to reflect the behavior of the human brain known as artificial neural network. Our results show that the filtered data produced by the AI-based method are consistent with the results obtained using conventional mathematical algorithms. The advantage of the AI-based method is that it can be applied to cases for which the conventional methods have limitations, such as forecast (hindcast) data or real-time monitoring of tropical variability in the 20–100-day range. 
    more » « less
  5. Abstract Through the implementation of a streaming filter, output of numerical ocean simulations can be band‐pass filtered at tidal frequencies while the model is running, yielding time series of sinusoidal motions consisting of tidal signals in the filter's target frequency band. The filtering algorithm is developed from a system of two ordinary differential equations that represents the motion of a damped harmonic oscillator. The filter's response to a broadband input signal is unity at its target frequency but vanishes toward the low and high frequency limits. The decay of the filter response is controlled by a dimensionless parameter, which determines the filter's bandwidth. As a result, the filter allows signals within a small frequency band around its target frequency to pass through, while blocking signals outside of its target frequency band. In this work, the filtering algorithm is implemented into the barotropic solver of the Modular Ocean Model version 6 (MOM6) for determining the instantaneous tidal velocities of the semi‐diurnal and diurnal tides. Utilizing the filters, the frequency‐dependent internal wave drag is applied to the semi‐diurnal and diurnal frequency bands separately. The simulation results suggest that the performance of the algorithm is consistent with the filter transfer function in Fourier space. Potential applications of the algorithm also include de‐tiding the model output for nested regional ocean models, especially those for the purpose of operational forecasting. 
    more » « less