Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Seizure onset zone (SOZ) identification using effective brain connectivity of epileptogenic networksAbstract Objective. To demonstrate the capability of utilizing graph feature-based supervised machine learning (ML) algorithm on intracranial electroencephalogram recordings for the identification of seizure onset zones (SOZs) in individuals with drug-resistant epilepsy.Approach. Utilizing three model-free measures of effective connectivity (EC)-directed information, mutual information-guided Granger causality index (MI-GCI), and frequency-domain convergent cross-mapping (FD-CCM) - directed graphs are generated. Graph centrality measures at different sparsity are used as the classifier’s features.Main results. The centrality features achieve high accuracies exceeding 90% in distinguishing SOZ electrodes from non-SOZ electrodes. Notably, a sparse graph representation with just ten features and simple ML models effectively achieves such performance. The study identifies FD-CCM centrality measures as particularly significant, with a mean AUC of 0.93, outperforming prior literature. The FD-CCM-based graph modeling also highlights elevated centrality measures among SOZ electrodes, emphasizing heightened activity relative to non-SOZ electrodes during ictogenesis.Significance. This research not only underscores the efficacy of automated SOZ identification but also illuminates the potential of specific EC measures in enhancing discriminative power within the context of epilepsy research.more » « less
- 
            This paper investigates scalp electroencephalogram (EEG) data from 14 subjects with unilateral prefrontal cortex (pFC) lesions and 20 healthy controls during lateral visuospatial working memory (WM) tasks. The goal is to differentiate the brain networks involved in WM processing between these groups. The EEG recordings are transformed into graph signals, with proximity-weighted brain connectivity measures as edges and centrality measures as nodal features. Graph convolutional network (GCN) layers are used for feature representation, followed by a fully connected layer for classification. The GCN-based model effectively handles nine classification tasks, proving that graph-based network representation is versatile for describing brain interactions. The sparse MI-GCI-based graph model’s accuracy effectively captures the functional segregation of distinct WM tasks. The classifier using mutual information-guided Granger causality index (MI-GCI) with 20% of top edges matched prior classification performance with 67% fewer parameters and 80% less graph density, identifying the correct class of all 34 subjects in group identification using leave-one-out cross-validation and two-thirds majority voting.more » « lessFree, publicly-accessible full text available January 8, 2026
- 
            Quantum computing is an emerging technology that has the potential to achieve exponential speedups over their classical counterparts. To achieve quantum advantage, quantum principles are being applied to fields such as communications, information processing, and artificial intelligence. However, quantum computers face a fundamental issue since quantum bits are extremely noisy and prone to decoherence. Keeping qubits error free is one of the most important steps towards reliable quantum computing. Different stabilizer codes for quantum error correction have been proposed in past decades and several methods have been proposed to import classical error correcting codes to the quantum domain. Design of encoding and decoding circuits for the stabilizer codes have also been proposed. Optimization of these circuits in terms of the number of gates is critical for reliability of these circuits. In this paper, we propose a procedure for optimization of encoder circuits for stabilizer codes. Using the proposed method, we optimize the encoder circuit in terms of the number of 2-qubit gates used. The proposed optimized eight-qubit encoder uses 18 CNOT gates and 4 Hadamard gates, as compared to 14 single qubit gates, 33 2-qubit gates, and 6 CCNOT gates in a prior work. The encoder and decoder circuits are verified using IBM Qiskit. We also present encoder circuits for the Steane code and a 13-qubit code, that are optimized with respect to the number of gates used, leading to a reduction in number of CNOT gates by 1 and 8, respectively.more » « less
- 
            Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit.more » « less
- 
            Spiking Neural Networks (SNNs) have gained popularity due to their high energy efficiency. Prior works have proposed various methods for training SNNs, including backpropagation-based methods. Training SNNs is computationally expensive compared to their conventional counterparts and would benefit from multiprocessor hardware acceleration. This is the first paper to propose inter-layer pipelining to accelerate training in SNNs using systolic array-based processors and multiprocessor scheduling. The impact of training using delayed gradients is observed using four networks training on different datasets, showing no degradation for small networks and < 10% degradation for large networks. The mapping of various training tasks of the SNN onto systolic arrays is formulated, and the proposed scheduling method is evaluated on the four networks. The results are compared against standard pipelining algorithms. The results show that the proposed method achieves an average speedup of 1.7× compared to standard pipelining algorithms, with an upwards of 2× improvement in some cases. The incurred communication overhead due to the proposed method is less than 0.5% of the total required communication of training in networks with convolutional layers.more » « less
- 
            Graph Neural Networks (GNNs) are a form of deep learning that have found use for a variety of problems, including the modeling of drug interactions, time-series analysis, and traffic prediction. They represent the problem using non-Euclidian graphs, allowing for a high degree of versatility, and are able to learn complex relationships by iteratively aggregating more contextual information from neighbors that are farther away. Inspired by its power in transformers, Graph Attention Networks (GATs) incorporate an attention mechanism on top of graph aggregation. GATs are considered the state of the art due to their superior performance. To learn the best parameters for a given graph problem, GATs use traditional backpropagation to compute weight updates. To the best of our knowledge, these updates are calculated in software, and closed-form equations describing their calculation for GATs aren’t well known. This paper derives closed-form equations for backpropagation in GATs using matrix notation. These equations can form the basis for design of hardware accelerators for training GATs.more » « less
- 
            Modern neural networks have revolutionized the fields of computer vision (CV) and Natural Language Processing (NLP). They are widely used for solving complex CV tasks and NLP tasks such as image classification, image generation, and machine translation. Most state-of-the-art neural networks are over-parameterized and require a high computational cost. One straightforward solution is to replace the layers of the networks with their low-rank tensor approximations using different tensor decomposition methods. This article reviews six tensor decomposition methods and illustrates their ability to compress model parameters of convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Transformers. The accuracy of some compressed models can be higher than the original versions. Evaluations indicate that tensor decompositions can achieve significant reductions in model size, run-time and energy consumption, and are well suited for implementing neural networks on edge devices.more » « less
- 
            Graph neural networks (GNNs) have emerged as a powerful tool to process graph-based data in fields like communication networks, molecular interactions, chemistry, social networks, and neuroscience. GNNs are characterized by the ultra-sparse nature of their adjacency matrix that necessitates the development of dedicated hardware beyond general-purpose sparse matrix multipliers. While there has been extensive research on designing dedicated hardware accelerators for GNNs, few have extensively explored the impact of the sparse storage format on the efficiency of the GNN accelerators. This paper proposes SCV-GNN with the novel sparse compressed vectors (SCV) format optimized for the aggregation operation. We use Z-Morton ordering to derive a data-locality-based computation ordering and partitioning scheme. The paper also presents how the proposed SCV-GNN is scalable on a vector processing system. Experimental results over various datasets show that the proposed method achieves a geometric mean speedup of 7.96× and 7.04× over CSC and CSR aggregation operations, respectively. The proposed method also reduces the memory traffic by a factor of 3.29× and 4.37× over compressed sparse column (CSC) and compressed sparse row (CSR), respectively. Thus, the proposed novel aggregation format reduces the latency and memory access for GNN inference.more » « less
- 
            This paper describes a group-level classification of 14 patients with prefrontal cortex (pFC) lesions from 20 healthy controls using multi-layer graph convolutional networks (GCN) with features inferred from the scalp EEG recorded from the encoding phase of working memory (WM) trials. We first construct undirected and directed graphs to represent the WM encoding for each trial for each subject using distance correlation- based functional connectivity measures and differential directed information-based effective connectivity measures, respectively. Centrality measures of betweenness centrality, eigenvector centrality, and closeness centrality are inferred for each of the 64 channels from the brain connectivity. Along with the three centrality measures, each graph uses the relative band powers in the five frequency bands - delta, theta, alpha, beta, and gamma- as node features. The summarized graph representation is learned using two layers of GCN followed by mean pooling, and fully connected layers are used for classification. The final class label for a subject is decided using majority voting based on the results from all the subject's trials. The GCN-based model can correctly classify 28 of the 34 subjects (82.35% accuracy) with undirected edges represented by functional connectivity measure of distance correlation and classify all 34 subjects (100% accuracy) with directed edges characterized by effective connectivity measure of differential directed information.more » « less
- 
            This paper describes a group-level analysis of 14 subjects with prefrontal cortex (pFC) lesions and 20 healthy controls performing multiple lateralized visuospatial working memory (WM) trials. Using effective brain connectivity measures inferred from directed information (DI) during memory encoding, we first show that DI features can correctly classify 18 control subjects and 11 subjects with pFC lesions, providing an overall accuracy of 85.3%. Second, we show that differential DI, the change in DI during the encoding phase from pretrial, can successfully overcome inter-subject variability and correctly identify the class of all 34 subjects (100% accuracy). These accuracy results are based on two-thirds majority thresholding among all trials. Finally, we use Welch’s t-test to identify the crucial differences in the two classes’ sub-networks responsible for memory encoding. While the inflow of information to the prefrontal region is significant among subjects with pFC lesions, the outflow from the prefrontal to the frontal and central regions is diminished compared to the control subjects. We further identify specific neural pathways that are exclusively activated for each group during the encoding phase.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
