Abstract The permafrost active layer is a key supplier of soil organic carbon and mineral nutrients to Arctic rivers. In the active layer, sites of soil-water exchange are locations for organic carbon and nutrient mobilization. Previously these sites were considered as connected during summer months and isolated during winter months. Whether soil pore waters in active layer soils are connected during shoulder seasons is poorly understood. In this study, exceptionally heavy silicon isotope compositions in soil pore waters show that during late winter, there is no connection between isolated pockets of soil pore water in soils with a shallow active layer. However, lighter silicon isotope compositions in soil pore waters reveal that soils are biogeochemically connected for longer than previously considered in soils with a deeper active layer. We show that an additional 21% of the 0–1 m soil organic carbon stock is exposed to soil - water exchange. This marks a hot moment during a dormant season, and an engine for organic carbon transport from active layer soils. Our findings mark the starting point to locate earlier pathways for biogeochemical connectivity, which need to be urgently monitored to quantify the seasonal flux of organic carbon released from permafrost soils.
more »
« less
In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems
Abstract. Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example) geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show the efficacy of borehole NMR (bNMR) to permafrost studies. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR is sensitive to the nucleation of ice within soil pore spaces.
more »
« less
- Award ID(s):
- 1636476
- PAR ID:
- 10313771
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 1994-0424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When wet Arctic tundra soils begin to freeze in the fall, an unfrozen layer remains between the frozen surface and deeper permafrost layers. This period is known as the zero curtain, as liquid water keeps the temperature of this soil layer near 0 Celsius (C) while latent heat is gradually dissipated. This project investigates the microbes that are metabolically active in the unfrozen layer during the fall zero curtain period and compares this community to that which is active in the late summer at the same depth (10-20 centimeters (cm)). This dataset contains the abundance and taxonomic designation of distinct 16S ribosomal ribonucleic acid (16S rRNA) sequences (operational taxonomic units, OTU's) associated with samples in this study. These data complement the sequences and metadata deposited in GenBank Bioproject PRJNA780202.more » « less
-
When wet Arctic tundra soils begin to freeze in the fall, an unfrozen layer remains between the frozen surface and deeper permafrost layers. This period is known as the zero curtain, as liquid water keeps the temperature of this soil layer near 0 Celsius (C) while latent heat is gradually dissipated. Significant methane emissions have been observed during this period but the role of concurrent biological production vs escape of stored methane requires more study. This dataset includes dissolved methane concentrations from the active layer (upper 35 centimeters (cm)) of Arctic tundra soils during the fall zero curtain period and in the spring, at the beginning of the thaw period. These data help address the question of biological methane production and storage during the fall.more » « less
-
Abstract The impact of permafrost thaw on hydrologic, thermal, and biotic processes remains uncertain, in part due to limitations in subsurface measurement capabilities. To better understand subsurface processes in thermokarst environments, we collocated geophysical and biogeochemical instruments along a thaw gradient between forested permafrost and collapse‐scar bogs at the Alaska Peatland Experiment site near Fairbanks, Alaska. Ambient seismic noise monitoring provided continuous high‐temporal resolution measurements of water and ice saturation changes. Maps of seismic velocity change identified areas of large summertime velocity reductions nearest the youngest bog, indicating potential thaw and expansion at the bog margin. These results corresponded well with complementary borehole nuclear magnetic resonance measurements of unfrozen water content with depth, which showed permafrost soils nearest the bog edges contained the largest amount of unfrozen water along the study transect, up to 25% by volume. In situ measurements of methane within permafrost soils revealed high concentrations at these bog‐edge locations, up to 30% soil gas. Supra‐permafrost talik zones were observed at the bog margins, indicating talik formation and perennial liquid water may drive lateral bog expansion and enhanced permafrost carbon losses preceding thaw. Comparison of seismic monitoring with wintertime surface carbon dioxide fluxes revealed differential responses depending on time and proximity to the bogs, capturing the controlling influence of subsurface water and ice on microbial activity and surficial emissions. This study demonstrates a multidisciplinary approach for gaining new understanding of how subsurface physical properties influence greenhouse gas production, emissions, and thermokarst development.more » « less
-
Abstract. The hydrology of thawing permafrost affects the fate of the vast amount of permafrost carbon due to its controls on waterlogging, redox status, and transport. However, regional mapping of soil water storage in the soil layer that experiences the annual freeze-thaw cycle above permafrost, known as the active layer, remains a formidable challenge over remote arctic regions. This study shows that Interferometric Synthetic Aperture Radar (InSAR) observations can be used to estimate the amount of soil water originating from the active layer seasonal thaw. Our ALOS InSAR results, validated by in situ observations, show that the thickness of the soil water that experiences the annual freeze-thaw cycle ranges from 0 to 75 cm in a 60-by-100-km area near the Toolik Field Station on the North Slope of Alaska. Notably, the spatial distribution of the soil water correlates with surface topography and land vegetation cover types. We found that pixel-mismatching of the topographic map and radar images is the primary error source in the Toolik ALOS InSAR data. The amount of pixel misregistration, the local slope, and the InSAR perpendicular baseline influence the observed errors in InSAR Line-Of-Sight (LOS) distance measurements non-linearly. For most of the study area with a percent slope of less than 5%, the LOS error from pixel misregistration is less than 1 cm, translating to less than 14 cm of error in the soil water estimates.more » « less
An official website of the United States government

