Plot-scale (660 square centimeters (cm2) measurements of methane (CH4) were made using a portable chamber system at North Star Yedoma (NSY), a grassland field in interior Alaska characterized by thermokarst (thaw) mounds forming due to degradation of ice-rich Yedoma, polygonal-ground permafrost soil and at 25 other extensive thermokarst-mound study sites in Alaskan tundra, boreal forest and grassland ecosystems. Measurements were made during summer, winter, and thaw seasons from March 2020 through March 2023. Soil temperature and moisture were measured in-situ with handheld probes on unfrozen soils. Thermokarst mounds are regularly spaced conical hills (≤15 meters (m) diameter, ≤5 m height) separated by trenches (≤3 m width) that form in degrading ice-rich Yedoma permafrost environments. Their formation and morphology are based on the melting of large syngenetic ice wedges in polygonal patterned ground, where the polygon margins (trenches) underlain by ice wedges subside faster and deeper than the less ice-rich polygon centers (mound tops), leaving behind distinct conical-mound features in regularly-spaced patterns. Thermokarst mounds are known to emit nitrous oxide [Marushchak et al. 2021, doi.org/10.1038/s41467-021-27386-2], but their carbon fluxes have until now remained largely uncharacterized. This data set characterizes thermokarst-mound methane fluxes in Alaska. 
                        more » 
                        « less   
                    
                            
                            The Biophysical Role of Water and Ice Within Permafrost Nearing Collapse: Insights From Novel Geophysical Observations
                        
                    
    
            Abstract The impact of permafrost thaw on hydrologic, thermal, and biotic processes remains uncertain, in part due to limitations in subsurface measurement capabilities. To better understand subsurface processes in thermokarst environments, we collocated geophysical and biogeochemical instruments along a thaw gradient between forested permafrost and collapse‐scar bogs at the Alaska Peatland Experiment site near Fairbanks, Alaska. Ambient seismic noise monitoring provided continuous high‐temporal resolution measurements of water and ice saturation changes. Maps of seismic velocity change identified areas of large summertime velocity reductions nearest the youngest bog, indicating potential thaw and expansion at the bog margin. These results corresponded well with complementary borehole nuclear magnetic resonance measurements of unfrozen water content with depth, which showed permafrost soils nearest the bog edges contained the largest amount of unfrozen water along the study transect, up to 25% by volume. In situ measurements of methane within permafrost soils revealed high concentrations at these bog‐edge locations, up to 30% soil gas. Supra‐permafrost talik zones were observed at the bog margins, indicating talik formation and perennial liquid water may drive lateral bog expansion and enhanced permafrost carbon losses preceding thaw. Comparison of seismic monitoring with wintertime surface carbon dioxide fluxes revealed differential responses depending on time and proximity to the bogs, capturing the controlling influence of subsurface water and ice on microbial activity and surficial emissions. This study demonstrates a multidisciplinary approach for gaining new understanding of how subsurface physical properties influence greenhouse gas production, emissions, and thermokarst development. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1636476
- PAR ID:
- 10447330
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 126
- Issue:
- 6
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Surface-based 2D electrical resistivity tomography (ERT) surveys were used to characterize permafrost distribution at wetland sites on the alluvial plain north of the Tanana River, 20 km southwest of Fairbanks, Alaska, in June and September 2014. The sites were part of an ecologically-sensitive research area characterizing biogeochemical response of this region to warming and permafrost thaw, and the site contained landscape features characteristic of interior Alaska, including thermokarst bog, forested permafrost plateau, and a rich fen. The results show how vegetation reflects shallow (0–10 m depth) permafrost distribution. Additionally, we saw shallow (0–3 m depth) low resistivity areas in forested permafrost plateau potentially indicating the presence of increased unfrozen water content as a precursor to ground instability and thaw. Time-lapse study from June to September suggested a depth of seasonal influence extending several meters below the active layer, potentially as a result of changes in unfrozen water content. A comparison of several electrode geometries (dipole-dipole, extended dipole-dipole, Wenner-Schlumberger) showed that for depths of interest to our study (0–10 m) results were similar, but data acquisition time with dipole-dipole was the shortest, making it our preferred geometry. The results show the utility of ERT surveys to characterize permafrost distribution at these sites, and how vegetation reflects shallow permafrost distribution. These results are valuable information for ecologically sensitive areas where ground-truthing can cause excessive disturbance. ERT data can be used to characterize the exact subsurface geometry of permafrost such that over time an understanding of changing permafrost conditions can be made in great detail. Characterizing the depth of thaw and thermal influence from the surface in these areas also provides important information as an indication of the depth to which carbon storage and microbially-mediated carbon processing may be affected.more » « less
- 
            Abstract. Thermokarst lake dynamics, which play an essential role in carbon releasedue to permafrost thaw, are affected by various geomorphological processes.In this study, we derive a three-dimensional (3D) Stefan equation tocharacterize talik geometry under a hypothetical thermokarst lake in thecontinuous permafrost region. Using the Euler equation in the calculus ofvariations, the lower bounds of the talik were determined as an extremum ofthe functional describing the phase boundary area with a fixed total talikvolume. We demonstrate that the semi-ellipsoid geometry of the talik isoptimal for minimizing the total permafrost thaw under the lake for a givenannual heat supply. The model predicting ellipsoidal talik geometry wascompared to talik thickness observations using transient electromagnetic(TEM) soundings in Peatball Lake on the Arctic Coastal Plain (ACP) ofnorthern Alaska. The depth : width ratio of the elliptical sub-lake talik cancharacterize the energy flux anisotropy in the permafrost, although the lakebathymetry cross section may not be elliptic due to the presence ofnear-surface ice-rich permafrost. This theory suggests that talikdevelopment deepens lakes and results in more uniform horizontal lakeexpansion around the perimeter of the lakes, while wind-induced waves andcurrents are likely responsible for the elongation and orientation ofshallow thermokarst lakes without taliks in certain regions such as the ACPof northern Alaska.more » « less
- 
            Permafrost formation and degradation creates a highly patchy mosaic of boreal peatland ecosystems in Alaska driven by climate, fire, and ecological changes. To assess the biophysical factors affecting permafrost dynamics, we monitored permafrost and ecological conditions in central Alaska from 2005 to 2021 by measuring weather, land cover, topography, thaw depths, hydrology, soil properties, soil thermal regimes, and vegetation cover between burned (1990 fire) and unburned terrain. Climate data show large variations among years with occasional, extremely warm–wet summers and cold–snowless winters that affect permafrost stability. Microtopography and thaw depth surveys revealed both permafrost degradation and aggradation. Thaw depths were deeper in post-fire scrub compared to unburned black spruce and increased moderately during the last year, but analysis of historical imagery (1954–2019) revealed no increase in thermokarst rates due to fire. Recent permafrost formation was observed in older bogs due to an extremely cold–snowless winter in 2007. Soil sampling found peat extended to depths of 1.5–2.8 m with basal radiocarbon dates of ~5–7 ka bp, newly accumulating post-thermokarst peat, and evidence of repeated episodes of permafrost formation and degradation. Soil surface temperatures in post-fire scrub bogs were ~1 °C warmer than in undisturbed black spruce bogs, and thermokarst bogs and lakes were 3–5 °C warmer than black spruce bogs. Vegetation showed modest change after fire and large transformations after thermokarst. We conclude that extreme seasonal weather, ecological succession, fire, and a legacy of earlier geomorphic processes all affect the repeated formation and degradation of permafrost, and thus create a highly patchy mosaic of ecotypes resulting from widely varying ecological trajectories within boreal peatland ecosystems.more » « less
- 
            null (Ed.)Aims Climate warming in northern ecosystems is triggering widespread permafrost thaw, during which deep soil nutrients, such as nitrogen, could become available for biological uptake. Permafrost thaw shift frozen organic matter to a saturated state, which could impede nutrient uptake. We assessed whether soil nitrogen can be accessed by the deep roots of vascular plants in thermokarst bogs, potentially allowing for increases in primary productivity. Methods We conducted an ammonium uptake experiment on Carex aquatilis Wahlenb. roots excavated from thermokarst bogs in interior Alaska. Ammonium uptake capacity was compared between deep and shallow roots. We also quantified differences in root ammonium uptake capacity and plant size characteristics (plant aboveground and belowground biomass, maximum shoot height, and maximum root length) between the actively-thawing margin and the centre of each thermokarst bog as a proxy for time-following-thaw. Results Deep roots had greater ammonium uptake capacity than shallow roots, while rooting depth, but not belowground biomass, was positively correlated with aboveground biomass. Although there were no differences in aboveground biomass between the margin and centre, our findings suggest that plants can benefit from investing in the acquisition of resources near the vertical thaw front. Conclusions Our results suggest that deep roots of C. aquatilis can contribute to plant nitrogen uptake and are therefore able to tolerate anoxic conditions in saturated thermokarst bogs. This work furthers our understanding of how subarctic and wetland plants respond to warming and how enhanced plant biomass production might help offset ecosystem carbon release with future permafrost thaw.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
