We describe a single fingertip-mounted sensing system for robot manipulation that provides proximity (pre-touch), contact detection (touch), and force sensing (post-touch). The sensor system consists of optical time-of-flight range measurement modules covered in a clear elastomer. Because the elastomer is clear, the sensor can detect and range nearby objects, as well as measure deformations caused by objects that are in contact with the sensor and thereby estimate the applied force. We examine how this sensor design can be improved with respect to invariance to object reflectivity, signal-to-noise ratio, and continuous operation when switching between the distance and force measurement regimes. By harnessing time-of-flight technology and optimizing the elastomer-air boundary to control the emitted light's path, we develop a sensor that is able to seamlessly transition between measuring distances of up to 50 mm and contact forces of up to 10 newtons. We demonstrate that our sensor improves manipulation accuracy in a block unstacking task. Thorough instructions for manufacturing the sensor from inexpensive, commercially available components are provided, as well as all relevant hardware design files and software sources.
more »
« less
iSoft: A Customizable Soft Sensor with Real-time Continuous Contact and Stretching Sensing
We present iSoft, a single volume soft sensor capable of sensing real-time continuous contact and unidirectional stretching. We propose a low-cost and an easy way to fabricate such piezoresistive elastomer-based soft sensors for instant interactions. We employ an electrical impedance tomography (EIT) technique to estimate changes of resistance distribution on the sensor caused by fingertip contact. To compensate for the rebound elasticity of the elastomer and achieve real-time continuous contact sensing, we apply a dynamic baseline update for EIT. The baseline updates are triggered by fingertip contact and movement detections. Further, we support unidirectional stretching sensing using a model-based approach which works separately with continuous contact sensing. We also provide a software toolkit for users to design and deploy personalized interfaces with customized sensors. Through a series of experiments and evaluations, we validate the performance of contact and stretching sensing. Through example applications, we show the variety of examples enabled by iSoft.
more »
« less
- Award ID(s):
- 1637961
- PAR ID:
- 10068524
- Date Published:
- Journal Name:
- ACM Symposium on User Interface Software and Technology (UIST)
- Page Range / eLocation ID:
- 665 to 678
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During in-hand manipulation, robots must be able to continuously estimate the pose of the object in order to generate appropriate control actions. The performance of algorithms for pose estimation hinges on the robot's sensors being able to detect discriminative geometric object features, but previous sensing modalities are unable to make such measurements robustly. The robot's fingers can occlude the view of environment- or robot-mounted image sensors, and tactile sensors can only measure at the local areas of contact. Motivated by fingertip-embedded proximity sensors' robustness to occlusion and ability to measure beyond the local areas of contact, we present the first evaluation of proximity sensor based pose estimation for in-hand manipulation. We develop a novel two-fingered hand with fingertip-embedded optical time-of-flight proximity sensors as a testbed for pose estimation during planar in-hand manipulation. Here, the in-hand manipulation task consists of the robot moving a cylindrical object from one end of its workspace to the other. We demonstrate, with statistical significance, that proximity-sensor based pose estimation via particle filtering during in-hand manipulation: a) exhibits 50% lower average pose error than a tactile-sensor based baseline; b) empowers a model predictive controller to achieve 30% lower final positioning error compared to when using tactile-sensor based pose estimates.more » « less
-
Madden, John D.; Anderson, Iain A.; Shea, Herbert R. (Ed.)Current robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. Human grasp is gentle yet firm, with integrated tactile touch feedback. Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure from gentle touch to high impact, controllably contract and expand at low voltage (battery levels), and attenuate force. The development of this technology towards sensing has provided for fingertip-like sensors that were able to detect very light pressures down to 0.01 N and even 0.005 N, with a wide pressure range to 25 N and more and with high linearity. By using these soft yet robust Tactile Fingertip™ sensors, immediate feedback was generated at the first point of contact. Because these elastomeric pads provided a soft compliant interface, the first point of contact did not apply excessive force, allowing for gentle object handling and control of the force applied to the object. The Tactile Fingertip could also detect a change in pressure location on its surface, i.e., directional glide provided real time feedback, making it possible to detect and prevent slippage by then adjusting the grip strength. Machine learning (ML) and artificial intelligence (AI) were integrated into these sensors for object identification along with the determination of good grip (position, grip force, no slip, no wobble) for pick-and-place and other applications. Synthetic Muscle™ is also being retrofitted as actuators into a human hand-like biomimetic gripper. The combination of EAP shape-morphing and sensing promises the potential for robotic grippers with human hand-like control and tactile sensing. This is expected to advance robotics, whether it is for agriculture, medical surgery, therapeutic or personal care, or in extreme environments where humans cannot enter, including with contagions that have no cure, as well as for collaborative robotics to allow humans and robots to intuitively work safely and effectively together.more » « less
-
A stretchable pressure sensor is a necessary tool for perceiving physical interactions that take place on soft/deformable skins present in human bodies, prosthetic limbs, or soft robots. However, all existing types of stretchable pressure sensors have an inherent limitation, which is the interference of stretching with pressure sensing accuracy. Here, we present a design for a highly stretchable and highly sensitive pressure sensor that can provide unaltered sensing performance under stretching, which is realized through the synergistic creations of an ionic capacitive sensing mechanism and a mechanically hierarchical microstructure. Via this optimized structure, our sensor exhibits 98% strain insensitivity up to 50% strain and a low pressure detection limit of 0.2 Pa. With the capability to provide all the desired characteristics for quantitative pressure sensing on a deformable surface, this sensor has been used to realize the accurate sensation of physical interactions on human or soft robotic skin.more » « less
-
This article presents a sensor for detecting the distribution of forces on a surface. The device with nine buttons consisted of an elastomer-based layer as a touch interface resting on a substrate of patterned metallized paper. The elastomer-based layer included a three-by-three array of deformable, hemispherical elements/reliefs, facing down toward an array of interdigitated capacitive sensing units on patterned metallized paper. Each hemispherical element is 20 mm in diameter and 8 mm in height. When a user applied pressure to the elastomer-based layer, the contact area between the hemispherical elements and the interdigitated capacitive sensing units increased with the deformation of the hemispherical elements. To enhance the sensitivity of the sensors, embedded particles of hydrogel in the elastomer-based layer increased the measured electrical responses. The measured capacitance increased because the effective dielectric permittivity of the hydrogel was greater than that of air. Electromechanical characterization verified that the hydrogel-filled elastomer was more sensitive to force at a low range of loads (23.4 pF/N) than elastomer alone without embedded hydrogel (3.4 pF/N), as the hydrogel reduced the effective elastic modulus of the composite material by a factor of seven. A simple demonstration suggests that the force-sensing array has the potential to contribute to wearable and soft robotic devices.more » « less
An official website of the United States government

