skip to main content

Title: Orchestrated trios: compiling for efficient communication in Quantum programs with 3-Qubit gates
Current quantum computers are especially error prone and require high levels of optimization to reduce operation counts and maximize the probability the compiled program will succeed. These computers only support operations decomposed into one- and two-qubit gates and only two-qubit gates between physically connected pairs of qubits. Typical compilers first decompose operations, then route data to connected qubits. We propose a new compiler structure, Orchestrated Trios, that first decomposes to the three-qubit Toffoli, routes the inputs of the higher-level Toffoli operations to groups of nearby qubits, then finishes decomposition to hardware-supported gates. This significantly reduces communication overhead by giving the routing pass access to the higher-level structure of the circuit instead of discarding it. A second benefit is the ability to now select an architecture-tuned Toffoli decomposition such as the 8-CNOT Toffoli for the specific hardware qubits now known after the routing pass. We perform real experiments on IBM Johannesburg showing an average 35% decrease in two-qubit gate count and 23% increase in success rate of a single Toffoli over Qiskit. We additionally compile many near-term benchmark algorithms showing an average 344% increase in (or 4.44x) simulated success rate on the Johannesburg architecture and compare with other architecture types.
; ; ;
Award ID(s):
1730449 1818914
Publication Date:
Journal Name:
Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems(ASPLOS 2021).
Sponsoring Org:
National Science Foundation
More Like this
  1. Current, near-term quantum devices have shown great progress in the last several years culminating recently with a demonstration of quantum supremacy. In the medium-term, however, quantum machines will need to transition to greater reliability through error correction, likely through promising techniques like surface codes which are well suited for near-term devices with limited qubit connectivity. We discover quantum memory, particularly resonant cavities with transmon qubits arranged in a 2.5D architecture, can efficiently implement surface codes with substantial hardware savings and performance/fidelity gains. Specifically, we virtualize logical qubits by storing them in layers of qubit memories connected to each transmon. Surprisingly, distributing each logical qubit across many memories has a minimal impact on fault tolerance and results in substantially more efficient operations. Our design permits fast transversal application of CNOT operations between logical qubits sharing the same physical address (same set of cavities) which are 6x faster than standard lattice surgery CNOTs. We develop a novel embedding which saves approximately 10x in transmons with another 2x savings from an additional optimization for compactness. Although qubit virtualization pays a 10x penalty in serialization, advantages in the transversal CNOT and in area efficiency result in fault-tolerance and performance comparable to conventional 2D transmon-onlymore »architectures. Our simulations show our system can achieve fault tolerance comparable to conventional two-dimensional grids while saving substantial hardware. Furthermore, our architecture can produce magic states at 1.22x the baseline rate given a fixed number of transmon qubits. This is a critical benchmark for future fault-tolerant quantum computers as magic states are essential and machines will spend the majority of their resources continuously producing them. This architecture substantially reduces the hardware requirements for fault-tolerant quantum computing and puts within reach a proof-of-concept experimental demonstration of around 10 logical qubits, requiring only 11 transmons and 9 attached cavities in total.« less
  2. Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps havemore »the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE.« less
  3. One of the key challenges in current Noisy Intermediate-Scale Quantum (NISQ) computers is to control a quantum system with high-fidelity quantum gates. There are many reasons a quantum gate can go wrong -- for superconducting transmon qubits in particular, one major source of gate error is the unwanted crosstalk between neighboring qubits due to a phenomenon called frequency crowding. We motivate a systematic approach for understanding and mitigating the crosstalk noise when executing near-term quantum programs on superconducting NISQ computers. We present a general software solution to alleviate frequency crowding by systematically tuning qubit frequencies according to input programs, trading parallelism for higher gate fidelity when necessary. The net result is that our work dramatically improves the crosstalk resilience of tunable-qubit, fixed-coupler hardware, matching or surpassing other more complex architectural designs such as tunable-coupler systems. On NISQ benchmarks, we improve worst-case program success rate by 13.3x on average, compared to existing traditional serialization strategies.
  4. Compiling high-level quantum programs to machines that are size constrained (i.e. limited number of quantum bits) and time constrained (i.e. limited number of quantum operations) is challenging. In this paper, we present SQUARE (Strategic QUantum Ancilla REuse), a compilation infrastructure that tackles allocation and reclamation of scratch qubits (called ancilla) in modular quantum programs. At its core, SQUARE strategically performs uncomputation to create opportunities for qubit reuse. Current Noisy Intermediate-Scale Quantum (NISQ) computers and forward-looking Fault-Tolerant (FT) quantum computers have fundamentally different constraints such as data locality, instruction parallelism, and communication overhead. Our heuristic-based ancilla-reuse algorithm balances these considerations and fits computations into resource-constrained NISQ or FT quantum machines, throttling parallelism when necessary. To precisely capture the workload of a program, we propose an improved metric, the "active quantum volume," and use this metric to evaluate the effectiveness of our algorithm. Our results show that SQUARE improves the average success rate of NISQ applications by 1.47X. Surprisingly, the additional gates for uncomputation create ancilla with better locality, and result in substantially fewer swap gates and less gate noise overall. SQUARE also achieves an average reduction of 1.5X (and up to 9.6X) in active quantum volume for FT machines.
  5. We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the lg(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancilla - an exponential improvement over the best qubit-only equivalent. Our approach features a 70× improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability (fidelity) for our circuit, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path toward extending the frontier of quantum computers.