skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Widespread mortality of trembling aspen (Populus tremuloides) throughout interior Alaskan boreal forests resulting from a novel canker disease
Over the past several decades, growth declines and mortality of trembling aspen throughout western Canada and the United States have been linked to drought, often interacting with outbreaks of insects and fungal pathogens, resulting in a “sudden aspen decline” throughout much of aspen’s range. In 2015, we noticed an aggressive fungal canker causing widespread mortality of aspen throughout interior Alaska and initiated a study to quantify potential drivers for the incidence, virulence, and distribution of the disease. Stand-level infection rates among 88 study sites distributed across 6 Alaska ecoregions ranged from <1 to 69%, with the proportion of trees with canker that were dead averaging 70% across all sites. The disease is most prevalent north of the Alaska Range within the Tanana Kuskokwim ecoregion. Modeling canker probability as a function of ecoregion, stand structure, landscape position, and climate revealed that smaller-diameter trees in older stands with greater aspen basal area have the highest canker incidence and mortality, while younger trees in younger stands appear virtually immune to the disease. Sites with higher summer vapor pressure deficits had significantly higher levels of canker infection and mortality. We believe the combined effects of this novel fungal canker pathogen, drought, and the persistent aspen leaf miner outbreak are triggering feedbacks between carbon starvation and hydraulic failure that are ultimately driving widespread mortality. Warmer early-season temperatures and prolonged late summer drought are leading to larger and more severe wildfires throughout interior Alaska that are favoring a shift from black spruce to forests dominated by Alaska paper birch and aspen. Widespread aspen mortality fostered by this rapidly spreading pathogen has significant implications for successional dynamics, ecosystem function, and feedbacks to disturbance regimes, particularly on sites too dry for Alaska paper birch.  more » « less
Award ID(s):
1636476
PAR ID:
10313873
Author(s) / Creator(s):
; ;
Editor(s):
Koch, Frank H.
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
4
ISSN:
1932-6203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neodothiora populina is a black yeast-like fungus in the family of Dothioraceae. It causes an aggressive canker disease of trembling aspen that results in widespread mortality of aspen across the boreal forest of Interior Alaska. Here we report a high-quality draft genome including functional annotation of this emerging fungal pathogen based on Nanopore Technology longread sequences. Our initial genome assembly totaled 23,960,169 bp and contained 18 contigs and we identified 7,343 genes. This resource announcement provides new genomic data useful long-term to improve our understanding of forest health in Alaska. 
    more » « less
  2. Neodothiora populina Crous, G.C. Adams & Winton was determined to be a new pathogen of trembling aspen (Populus tremuloides) growing in Alaska, based on completion of Koch’s Postulates in replicated forest and growth chamber inoculation trials. The pathogen is responsible for severe damage and widespread rapid mortality of sapling to mature aspen (≥ 80 years) in the boreal forests of interior Alaska, due to large diffuse annual (1–2 years) cankers. Isolation of the pathogen was challenging, and identification based on cultural characters was difficult. Fruiting bodies were not found on wild diseased trees, but erumpent pycnidia were found in bark overlying cankers on several stems inoculated with pure cultures. 
    more » « less
  3. Ross, Darrell (Ed.)
    Abstract Hemlock woolly adelgid (HWA; Adelges tsugae Annand (Hemiptera: Adelgidae)) is the cause of widespread mortality of Carolina and eastern hemlock (Tsuga caroliniana Engelmann and T. canadensis (L.) Carrière) throughout the eastern United States (U.S.). Since its arrival in the northeastern U.S., HWA has steadily invaded and established throughout eastern hemlock stands. However, in 2018, anecdotal evidence suggested a sharp, widespread HWA decline in the northeastern U.S. following above-average summer and autumn rainfall. To quantify this decline in HWA density and investigate its cause, we surveyed HWA density in hemlock stands from northern Massachusetts to southern Connecticut and analyzed HWA density and summer mortality in Pennsylvania. As native fungal entomopathogens are known to infect HWA in the northeastern U.S. and rainfall facilitates propagation and spread of fungi, we hypothesized high rainfall facilitates fungal infection of aestivating nymphs, leading to a decline in HWA density. We tested this hypothesis by applying a rain-simulation treatment to hemlock branches with existing HWA infestations in western MA. Our results indicate a regional-scale decline and subsequent rebound in HWA density that correlates with 2018 rainfall at each site. Experimental rain treatments resulted in higher proportions of aestivating nymphs with signs of mortality compared to controls. In conjunction with no evidence of increased mortality from extreme winter or summer temperatures, our results demonstrate an indirect relationship between high rainfall and regional HWA decline. This knowledge may lead to better prediction of HWA population dynamics. 
    more » « less
  4. Abstract Warming temperatures and rising moisture deficits are expected to increase the rates of background tree mortality–low amounts of tree mortality (~0.5%–2% year−1), characterizing the forest demographic processes in the absence of abrupt, coarse‐scale disturbance events (e.g. fire). When compounded over multiple decades and large areas, even minor increases in background tree mortality (e.g. <0.5% year−1) can cause changes to forest communities and carbon storage potential that are comparable to or greater than those caused by disturbances.We examine how temporal variability in rates of background tree mortality for four subalpine conifers reflects variability in climate and climate teleconnections using observations of tree mortality from 1982 to 2019 at Niwot Ridge, Colorado, USA. Individually marked trees (initial population 5,043) in 13 permanent plots—located across a range of site conditions, stand ages and species compositions—were censused for new mortality nine times over 37 years.Background tree mortality was primarily attributed to stress from unfavourable climate and competition (71.2%) and bark beetle activity (23.3%), whereas few trees died from wind (5.3%) and wildlife impacts (0.2%). Mean annualized tree mortality attributed to tree stress and bark beetles more than tripled across all stands between initial censuses (0.26% year−1, 1982–1993/1994) and recent censuses (0.82% year−1, 2008–2019). Higher rates of tree mortality were related to warmer maximum summer temperatures, greater summer moisture deficits, and negative anomalies in ENSO (La Niña), with greater effects of drought in some subpopulations (tree size, age and species). For example, in older stands (>250 years), larger and older trees were more likely to die than smaller and younger trees. Differences in tree mortality rates and sensitivity to climate among subpopulations that varied by stand type may lead to unexpected shifts in stand composition and structure.Synthesis. A strong relationship between higher rates of tree mortality and warmer, drier summer climate conditions implies that climate warming will continue to increase background mortality rates in subalpine forests. Combined with increases in disturbances and declining frequency of moist‐cool years suitable for seedling establishment, increasing rates of tree mortality have the potential to drive declines in subalpine tree populations. 
    more » « less
  5. White oak, a keystone species of the broadleaf forests of the North American Midwest, has a significant role in providing ecosystems services in a region experiencing warming and increasingly pluvial conditions. A one- hundred-year-old white oak stand in an arboretum, along with two second growth (~200-year-old) stands from Northeast Ohio have consistently responded positively to summer (June-July) precipitation over the past century, whereas four nearby old growth sites (>300 years old) have lost their moisture sensitivity since about the mid 1970s. This “fading drought signal,” which has been previously reported, appears to be more a result of the legacy of land use at the individual sites rather than tree age. The younger oak stands and their relative sustained drought sensitivity is also related to their history of recently attaining the canopy and similar responses associated with intervals of selective logging. All sites are strongly, negatively correlated with summer (June- July) maximum monthly temperatures and in general the maximum temperatures are negatively correlated with precipitation in those months. Future warming in the Midwest is projected to see increases in spring precipitation and likely decreases in late summer precipitation linked to a northward migration of the North American Westerly Jet. This projected decrease in summer precipitation coupled with an increase in maximum and min- imum summer temperatures in the coming decades would increase the moisture stress on these trees. Our ex- amination of these varying climate responses with respect to site characteristics and forest age can help future assessments of tree health and the forest’s ability to sequester carbon, as well as facilitate efforts to reconstruct climate by using a range of tree sites for intervals when sensitivity in old growth sites is lost. 
    more » « less