skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving the monitoring of deciduous broadleaf phenology using the Geostationary Operational Environmental Satellite (GOES) 16 and 17
Abstract. Monitoring leaf phenology tracks the progression ofclimate change and seasonal variations in a variety of organismal andecosystem processes. Networks of finite-scale remote sensing, such as thePhenoCam network, provide valuable information on phenological state at hightemporal resolution, but they have limited coverage. Satellite-based data withlower temporal resolution have primarily been used to more broadly measurephenology (e.g., 16 d MODIS normalizeddifference vegetation index (NDVI) product). Recent versions of the GeostationaryOperational Environmental Satellites (GOES-16 and GOES-17) can monitor NDVI attemporal scales comparable to that of PhenoCam throughout most of thewestern hemisphere. Here we begin to examine the current capacity of thesenew data to measure the phenology of deciduous broadleaf forests for thefirst 2 full calendar years of data (2018 and 2019) by fittingdouble-logistic Bayesian models and comparing the transition dates of the start, middle, and end of theseason to those obtained from PhenoCam and MODIS 16 dNDVI and enhanced vegetation index (EVI) products. Compared to these MODIS products, GOES was morecorrelated with PhenoCam at the start and middle of spring but had a largerbias (3.35 ± 0.03 d later than PhenoCam) at the end of spring.Satellite-based autumn transition dates were mostly uncorrelated with thoseof PhenoCam. PhenoCam data produced significantly more certain (allp values ≤0.013) estimates of all transition dates than any of thesatellite sources did. GOES transition date uncertainties were significantlysmaller than those of MODIS EVI for all transition dates (all p values ≤0.026), but they were only smaller (based on p value <0.05) than thosefrom MODIS NDVI for the estimates of the beginning and middle of spring. GOES willimprove the monitoring of phenology at large spatial coverages and providesreal-time indicators of phenological change even when the entire springtransition period occurs within the 16 d resolution of these MODISproducts.  more » « less
Award ID(s):
1638577
PAR ID:
10313885
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biogeosciences
Volume:
18
Issue:
6
ISSN:
1726-4189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better represent the variation of GPP. 
    more » « less
  2. Abstract Land surface phenology (LSP) products are currently of large uncertainties due to cloud contaminations and other impacts in temporal satellite observations and they have been poorly validated because of the lack of spatially comparable ground measurements. This study provided a reference dataset of gap-free time series and phenological dates by fusing the Harmonized Landsat 8 and Sentinel-2 (HLS) observations with near-surface PhenoCam time series for 78 regions of 10 × 10 km2across ecosystems in North America during 2019 and 2020. The HLS-PhenoCam LSP (HP-LSP) reference dataset at 30 m pixels is composed of: (1) 3-day synthetic gap-free EVI2 (two-band Enhanced Vegetation Index) time series that are physically meaningful to monitor the vegetation development across heterogeneous levels, train models (e.g., machine learning) for land surface mapping, and extract phenometrics from various methods; and (2) four key phenological dates (accuracy ≤5 days) that are spatially continuous and scalable, which are applicable to validate various satellite-based phenology products (e.g., global MODIS/VIIRS LSP), develop phenological models, and analyze climate impacts on terrestrial ecosystems. 
    more » « less
  3. null (Ed.)
    Phenology is a distinct marker of the impacts of climate change on ecosystems. Accordingly, monitoring the spatiotemporal patterns of vegetation phenology is important to understand the changing Earth system. A wide range of sensors have been used to monitor vegetation phenology, including digital cameras with different viewing geometries mounted on various types of platforms. Sensor perspective, view-angle, and resolution can potentially impact estimates of phenology. We compared three different methods of remotely sensing vegetation phenology—an unoccupied aerial vehicle (UAV)-based, downward-facing RGB camera, a below-canopy, upward-facing hemispherical camera with blue (B), green (G), and near-infrared (NIR) bands, and a tower-based RGB PhenoCam, positioned at an oblique angle to the canopy—to estimate spring phenological transition towards canopy closure in a mixed-species temperate forest in central Virginia, USA. Our study had two objectives: (1) to compare the above- and below-canopy inference of canopy greenness (using green chromatic coordinate and normalized difference vegetation index) and canopy structural attributes (leaf area and gap fraction) by matching below-canopy hemispherical photos with high spatial resolution (0.03 m) UAV imagery, to find the appropriate spatial coverage and resolution for comparison; (2) to compare how UAV, ground-based, and tower-based imagery performed in estimating the timing of the spring phenological transition. We found that a spatial buffer of 20 m radius for UAV imagery is most closely comparable to below-canopy imagery in this system. Sensors and platforms agree within +/− 5 days of when canopy greenness stabilizes from the spring phenophase into the growing season. We show that pairing UAV imagery with tower-based observation platforms and plot-based observations for phenological studies (e.g., long-term monitoring, existing research networks, and permanent plots) has the potential to scale plot-based forest structural measures via UAV imagery, constrain uncertainty estimates around phenophases, and more robustly assess site heterogeneity. 
    more » « less
  4. Abstract The new TROPOspheric Monitoring Instrument (TROPOMI) solar‐induced chlorophyll fluorescence (SIF) data provides new opportunities to corroborate and improve global photosynthesis estimates. Here we report the spatiotemporal consistency between TROPOMI SIF and vegetation indices from the bidirectional reflectance distribution function (BRDF) adjusted (MCD43) and standard MODIS (MOD09) surface reflectance products, estimates of absorbed photosynthetically active radiation by chlorophyll (APARchl) derived from National Centers for Environmental Prediction Reanalysis‐2 (NCEP2), MODIS MCD18, and European Reanalysis (ERA5) data, and two GPP products (GPPVPMand GPPMOD17). We find (a) non‐adjusted VIs were more highly correlated with SIF at mid and high latitude than BRDF‐adjusted VIs, but were less correlated in the tropics, (b) negligible differences in the correlation between SIF and non‐adjusted NIRv and EVI, but BRDF‐adjusted NIRv had higher correlations with SIF at mid to high latitude than BRDF‐adjusted EVI but lower correlations in the tropics, (c) choice of PAR data set likely to cause substantial differences in global and regional GPP estimates and the correlation between modeled GPP and SIF, (d) SIF was more highly correlated with APARchlat high to mid latitude than EVI but more highly correlated with EVI at lower latitudes, and (e) GPPVPMis more highly correlated with SIF than GPPMOD17, except in sub‐Sahara Africa. Our results highlight that spaceborne photosynthesis would likely be improved by using a non‐linear response to PAR and that the fundamental differences between the vegetation indices and PAR data sets are likely to yield important differences in global and regional estimates of photosynthesis. 
    more » « less
  5. null (Ed.)
    High-quality retrieval of land surface phenology (LSP) is increasingly important for understanding the effects of climate change on ecosystem function and biosphere–atmosphere interactions. We analyzed four state-of-the-art phenology methods: threshold, logistic-function, moving-average and first derivative based approaches, and retrieved LSP in the North Hemisphere for the period 1999–2017 from Copernicus Global Land Service (CGLS) SPOT-VEGETATION and PROBA-V leaf area index (LAI) 1 km V2.0 time series. We validated the LSP estimates with near-surface PhenoCam and eddy covariance FLUXNET data over 80 sites of deciduous forests. Results showed a strong correlation (R2 > 0.7) between the satellite LSP and ground-based observations from both PhenoCam and FLUXNET for the timing of the start (SoS) and R2 > 0.5 for the end of season (EoS). The threshold-based method performed the best with a root mean square error of ~9 d with PhenoCam and ~7 d with FLUXNET for the timing of SoS (30th percentile of the annual amplitude), and ~12 d and ~10 d, respectively, for the timing of EoS (40th percentile). 
    more » « less