skip to main content

Title: Improving the monitoring of deciduous broadleaf phenology using the Geostationary Operational Environmental Satellite (GOES) 16 and 17
Abstract. Monitoring leaf phenology tracks the progression ofclimate change and seasonal variations in a variety of organismal andecosystem processes. Networks of finite-scale remote sensing, such as thePhenoCam network, provide valuable information on phenological state at hightemporal resolution, but they have limited coverage. Satellite-based data withlower temporal resolution have primarily been used to more broadly measurephenology (e.g., 16 d MODIS normalizeddifference vegetation index (NDVI) product). Recent versions of the GeostationaryOperational Environmental Satellites (GOES-16 and GOES-17) can monitor NDVI attemporal scales comparable to that of PhenoCam throughout most of thewestern hemisphere. Here we begin to examine the current capacity of thesenew data to measure the phenology of deciduous broadleaf forests for thefirst 2 full calendar years of data (2018 and 2019) by fittingdouble-logistic Bayesian models and comparing the transition dates of the start, middle, and end of theseason to those obtained from PhenoCam and MODIS 16 dNDVI and enhanced vegetation index (EVI) products. Compared to these MODIS products, GOES was morecorrelated with PhenoCam at the start and middle of spring but had a largerbias (3.35 ± 0.03 d later than PhenoCam) at the end of spring.Satellite-based autumn transition dates were mostly uncorrelated with thoseof PhenoCam. PhenoCam data produced significantly more certain (allp values ≤0.013) estimates of all transition more » dates than any of thesatellite sources did. GOES transition date uncertainties were significantlysmaller than those of MODIS EVI for all transition dates (all p values ≤0.026), but they were only smaller (based on p value <0.05) than thosefrom MODIS NDVI for the estimates of the beginning and middle of spring. GOES willimprove the monitoring of phenology at large spatial coverages and providesreal-time indicators of phenological change even when the entire springtransition period occurs within the 16 d resolution of these MODISproducts. « less
Authors:
;
Award ID(s):
1638577
Publication Date:
NSF-PAR ID:
10313885
Journal Name:
Biogeosciences
Volume:
18
Issue:
6
ISSN:
1726-4189
Sponsoring Org:
National Science Foundation
More Like this
  1. Phenology is a distinct marker of the impacts of climate change on ecosystems. Accordingly, monitoring the spatiotemporal patterns of vegetation phenology is important to understand the changing Earth system. A wide range of sensors have been used to monitor vegetation phenology, including digital cameras with different viewing geometries mounted on various types of platforms. Sensor perspective, view-angle, and resolution can potentially impact estimates of phenology. We compared three different methods of remotely sensing vegetation phenology—an unoccupied aerial vehicle (UAV)-based, downward-facing RGB camera, a below-canopy, upward-facing hemispherical camera with blue (B), green (G), and near-infrared (NIR) bands, and a tower-based RGB PhenoCam, positioned at an oblique angle to the canopy—to estimate spring phenological transition towards canopy closure in a mixed-species temperate forest in central Virginia, USA. Our study had two objectives: (1) to compare the above- and below-canopy inference of canopy greenness (using green chromatic coordinate and normalized difference vegetation index) and canopy structural attributes (leaf area and gap fraction) by matching below-canopy hemispherical photos with high spatial resolution (0.03 m) UAV imagery, to find the appropriate spatial coverage and resolution for comparison; (2) to compare how UAV, ground-based, and tower-based imagery performed in estimating the timing of the spring phenologicalmore »transition. We found that a spatial buffer of 20 m radius for UAV imagery is most closely comparable to below-canopy imagery in this system. Sensors and platforms agree within +/− 5 days of when canopy greenness stabilizes from the spring phenophase into the growing season. We show that pairing UAV imagery with tower-based observation platforms and plot-based observations for phenological studies (e.g., long-term monitoring, existing research networks, and permanent plots) has the potential to scale plot-based forest structural measures via UAV imagery, constrain uncertainty estimates around phenophases, and more robustly assess site heterogeneity.« less
  2. Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggestmore »using multiple VIs to better represent the variation of GPP.« less
  3. Accurate phenological information is essential for monitoring crop development, predicting crop yield, and enhancing resilience to cope with climate change. This study employed a curve-change-based dynamic threshold approach on NDVI (Normalized Differential Vegetation Index) time series to detect the planting and harvesting dates for corn and soybean in Kentucky, a typical climatic transition zone, from 2000 to 2018. We compared satellite-based estimates with ground observations and performed trend analyses of crop phenological stages over the study period to analyze their relationships with climate change and crop yields. Our results showed that corn and soybean planting dates were delayed by 0.01 and 0.07 days/year, respectively. Corn harvesting dates were also delayed at a rate of 0.67 days/year, while advanced soybean harvesting occurred at a rate of 0.05 days/year. The growing season length has increased considerably at a rate of 0.66 days/year for corn and was shortened by 0.12 days/year for soybean. Sensitivity analysis showed that planting dates were more sensitive to the early season temperature, while harvesting dates were significantly correlated with temperature over the entire growing season. In terms of the changing climatic factors, only the increased summer precipitation was statistically related to the delayed corn harvesting dates in Kentucky.more »Further analysis showed that the increased corn yield was significantly correlated with the delayed harvesting dates (1.37 Bu/acre per day) and extended growing season length (1.67 Bu/acre per day). Our results suggested that seasonal climate change (e.g., summer precipitation) was the main factor influencing crop phenological trends, particularly corn harvesting in Kentucky over the study period. We also highlighted the critical role of changing crop phenology in constraining crop production, which needs further efforts for optimizing crop management practices.« less
  4. The newest version of the Geostationary Operational Environmental Satellite series (GOES-16 and GOES-17) includes a near infrared band that allows for the calculation of normalized difference vegetation index (NDVI) at a 1 km at nadir spatial resolution every five minutes throughout the continental United States and every ten minutes for much of the western hemisphere. The usefulness of individual NDVI observations is limited due to the noise that remains even after cloud masks and data quality flags are applied, as much of this noise is negatively biased due to scattering within the atmosphere. Fortunately, high temporal resolution NDVI allows for the identification of consistent diurnal patterns. Here, we present a novel statistical model that utilizes this pattern, by fitting double exponential curves to the diurnal NDVI data, to provide a daily estimate of NDVI over forests that is less sensitive to noise by accounting for both random observation errors and atmospheric scattering biases. We fit this statistical model to 350 days of observations for fifteen deciduous broadleaf sites in the United States and compared the method to several simpler potential methods. Of the days 60% had more than ten observations and were able to be modeled via our methodology. Ofmore »the modeled days 72% produced daily NDVI estimates with <0.1 wide 95% confidence intervals. Of the modeled days 13% were able to provide a confident NDVI value even if there were less than five observations between 10:00–14:00. This methodology provides estimates for daily midday NDVI values with robust uncertainty estimates, even in the face of biased errors and missing midday observations.« less
  5. The southern Appalachian forests have been threatened by several large-scale disturbances, such as wildfire and infestation, which alter the forest ecosystem structures and functions. Hemlock Woolly Adelgid (Adelges tsugae Annand, HWA) is a non-native pest that causes widespread foliar damage and eventual mortality, resulting in irreversible tree decline in eastern (Tsuga canadensis) and Carolina (T. caroliniana) hemlocks throughout the eastern United States. It is important to monitor the extent and severity of these disturbances over space and time to better understand their implications in the biogeochemical cycles of forest landscapes. Using all available Landsat images, we investigate and compare the performance of Tasseled Cap Transformation (TCT)-based indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Disturbance Index (DI) in capturing the spectral-temporal trajectory of both abrupt and gradual forest disturbances (e.g., fire and hemlock decline). For each Landsat pixel, the temporal trajectories of these indices were fitted into a time series model, separating the inter-annual disturbance patterns (low frequency) and seasonal phenology (high frequency) signals. We estimated the temporal dynamics of disturbances based on the residuals between the observed and predicted values of the model, investigated the performance of all the indices in capturing the hemlock decline intensity,more »and further validated the results with the number of individual dead hemlocks identified from high-resolution aerial images. Our results suggested that the overall performance of NDVI, followed by TCT wetness, was most accurate in detecting both the disturbance timing and hemlock decline intensity, explaining over 90% of the variability in the number of dead hemlocks. Despite the overall good performance of TCT wetness in characterizing the disturbance regime, our analysis showed that this index has some limitations in characterizing disturbances due to its recovery patterns following infestation.« less