Unmanned aerial vehicles or drones are widely used or proposed to carry out various tasks in low-altitude airspace. To safely integrate drone traffic into congested airspace, the current concept of operations for drone traffic management will reserve a static traffic volume for the whole planned trajectory, which is safe but inefficient. In this paper, we propose a dynamic traffic volume reservation method for the drone traffic management system based on a multiscale A* algorithm. The planning airspace is represented as a multiresolution grid world, where the resolution will be coarse for the area on the far side. Therefore, each drone only needs to reserve a temporary traffic volume along the finest flight path in its local area, which helps release the airspace back to others. Moreover, the multiscale A* can run nearly in real-time due to a much smaller search space, which enables dynamically rolling planning to consider updated information. To handle the infeasible corner cases of the multiscale algorithm, a hybrid strategy is further developed, which can maintain a similar optimal level to the classic A* algorithm while still running nearly in real-time. The presented numerical results support the advantages of the proposed approach.
more »
« less
Airspace Geofencing and Flight Planning for Low-Altitude, Urban, Small Unmanned Aircraft Systems
Airspace geofencing is a key capability for low-altitude Unmanned Aircraft System (UAS) Traffic Management (UTM). Geofenced airspace volumes can be allocated to safely contain compatible UAS flight operations within a fly-zone (keep-in geofence) and ensure the avoidance of no-fly zones (keep-out geofences). This paper presents the application of three-dimensional flight volumization algorithms to support airspace geofence management for UTM. Layered polygon geofence volumes enclose user-input waypoint-based 3-D flight trajectories, and a family of flight trajectory solutions designed to avoid keep-out geofence volumes is proposed using computational geometry. Geofencing and path planning solutions are analyzed in an accurately mapped urban environment. Urban map data processing algorithms are presented. Monte Carlo simulations statistically validate our algorithms, and runtime statistics are tabulated. Benchmark evaluation results in a Manhattan, New York City low-altitude environment compare our geofenced dynamic path planning solutions against a fixed airway corridor design. A case study with UAS route deconfliction is presented, illustrating how the proposed geofencing pipeline supports multi-vehicle deconfliction. This paper contributes to the nascent theory and the practice of dynamic airspace geofencing in support of UTM.
more »
« less
- Award ID(s):
- 1738714
- PAR ID:
- 10439568
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 576
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A reliable command and control (C2) data link is required for unmanned aircraft systems (UAS) operations in order to monitor the status and support the control of UAS. A practical realization of the C2 communication and mission data links for commercial UAS operations is via LTE/5G networks. While the trajectory of each UAS directly determines the flight distance and mission cost in terms of energy dissipation, it also has a strong correlation to the quality of the communication link provided by a serving base station, where quality is defined as the achieved signal-to-interference-plus-noise ratio (SINR) required to maintain the control link of the UAS. Due to signal interference and the use of RF spectrum resources, the trajectory of a UAS not only determines the communication link quality it will encounter, but also influences the link quality of other UAS in its vicinity. Therefore, effective UAS traffic management must plan the trajectory for a group of UAS taking into account the impact to the interference levels of other base stations and UAS communication links. In this paper, an SINR Aware Predictive Planning (SAPP) framework is presented for trajectory planning of UAS leveraging 4G/5G communication networks in a simulated environment. The goal is to minimize flight distance while ensuring a minimum required link quality for C2 communications between UAS and base stations. The predictive control approach is proposed to address the challenges of the time varying SINR caused by the interference from other UAS’s communication. Experimental results show that the SAPP framework provides more than 3dB improvements on average for UAS communication parameters compared to traditional trajectory planning algorithms while still achieving shortest path trajectories and collision avoidance.more » « less
-
Urban Air Mobility, the scenario where hundreds of manned and Unmanned Aircraft Systems (UASs) carry out a wide variety of missions (e.g., moving humans and goods within the city), is gaining acceptance as a transportation solution of the future. One of the key requirements for this to happen is safely managing the air traffic in these urban airspaces. Due to the expected density of the airspace, this requires fast autonomous solutions that can be deployed online. We propose Learning-‘N-Flying (LNF), a multi-UAS Collision Avoidance (CA) framework. It is decentralized, works on the fly, and allows autonomous Unmanned Aircraft System (UAS)s managed by different operators to safely carry out complex missions, represented using Signal Temporal Logic, in a shared airspace. We initially formulate the problem of predictive collision avoidance for two UASs as a mixed-integer linear program, and show that it is intractable to solve online. Instead, we first develop Learning-to-Fly (L2F) by combining (1) learning-based decision-making and (2) decentralized convex optimization-based control. LNF extends L2F to cases where there are more than two UASs on a collision path. Through extensive simulations, we show that our method can run online (computation time in the order of milliseconds) and under certain assumptions has failure rates of less than 1% in the worst case, improving to near 0% in more relaxed operations. We show the applicability of our scheme to a wide variety of settings through multiple case studies.more » « less
-
The key concept for safe and efficient traffic management for Unmanned Aircraft Systems (UAS) is the notion of operation volume (OV). An OV is a 4-dimensional block of airspace and time, which can express an aircraft’s intent, and can be used for planning, de-confliction, and traffic management. While there are several high-level simulators for UAS Traffic Management (UTM), we are lacking a frame- work for creating, manipulating, and reasoning about OVs for heterogeneous air vehicles. In this paper, we address this and present SkyTrakx—a software toolkit for simulation and verification of UTM scenarios based on OVs. First, we illustrate a use case of SkyTrakx by presenting a specific air traffic coordination protocol. This protocol communicates OVs between participating aircraft and an airspace manager for traffic routing. We show how existing formal verification tools, Dafny and Dione, can assist in automatically checking key properties of the protocol. Second, we show how the OVs can be computed for heterogeneous air vehicles like quadcopters and fixed-wing aircraft using another verification technique, namely reachability analysis. Finally, we show that SkyTrakx can be used to simulate complex scenarios involving heterogeneous vehicles, for testing and performance evaluation in terms of workload and response delays analysis. Our experiments delineate the trade-off between performance and workload across different strategies for generating OVs.more » « less
-
Small Unmanned Aircraft Systems (sUAS) will be an important component of the smart city and intelligent transportation environments of the near future. The demand for sUAS related applications, such as commercial delivery and land surveying, is expected to grow rapidly in next few years. In general, sUAS traffic scheduling and management functions are needed to coordinate the launching of sUAS from different launch sites and plan their trajectories to avoid conflict while considering several other constraints such as expected arrival time, minimum flight energy, and availability of communication resources. However, as the airbone sUAS density grows in a certain area, it is difficult to foresee the potential airspace and communications resource conflicts and make immediate decisions to avoid them. To address this challenge, we present a temporal and spatial routing algorithm for sUAS trajectory management in a high density urban area. It plans sUAS movements in a spatial and temporal maze with the consideration of obstacles that are either static or dynamic in time. The routing allows the sUAS to avoid static no-fly areas (i.e. static obstacles) or other in-flight sUAS and areas that have congested communication resources (i.e. dynamic obstacles). The algorithm is evaluated using an agent-based simulation platform. The simulation results show that the proposed algorithm outperforms reference route management algorithms in many areas, especially in processing speed and memory efficiency. Detailed comparisons are provided for the sUAS flight time, the overall throughput, the conflict rate and communication resource utilization. The results demonstrate that our proposed algorithm can be used as a solution to improve the efficiency of airspace and communication resource utilization for next generation smart city and smart transportation.more » « less