skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-Dimensional Modeling of Minority-Carrier Lateral Diffusion Length Including Random Alloy Fluctuations in ( In , Ga ) N and ( Al , Ga ) N Single Quantum Wells
Award ID(s):
1839077
PAR ID:
10313913
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Review Applied
Volume:
16
Issue:
2
ISSN:
2331-7019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wurtzite ( Al , Sc ) N ferroelectrics are attractive for microelectronics applications due to their chemical and structural compatibility with wurtzite semiconductors, such as Ga N and ( Al , Ga ) N . However, the leakage current in epitaxial stacks reported to date should be reduced for reliable device operation. Here, we demonstrate low leakage current in epitaxial Al 0.7 Sc 0.3 N films on Ga N with well-saturated ferroelectric hysteresis loops that are orders of magnitude lower (i.e., 0.07 A cm 2 ) than previously reported films (1–19 A cm 2 ) having similar or better structural characteristics. We also show that, for these high-quality epitaxial ( Al , Sc ) N films, structural quality (edge and screw dislocations), as measured by diffraction techniques, is not the dominant contributor to leakage. Instead, the small leakage in our films is limited by thermionic emission across the interfaces, which is distinct from the large leakage due to trap-mediated bulk transport in the previously reported ( Al , Sc ) N films. To support this conclusion, we show that Al 0.7 Sc 0.3 N on lattice-matched In 0.18 Ga 0.82 N buffers with improved structural characteristics but higher interface roughness exhibit increased leakage characteristics. This demonstration of low leakage current in heteroepitaxial ( Al , Sc ) N films and understanding of the importance of interface barrier and surface roughness can guide further efforts toward improving the reliability of wurtzite ferroelectric devices. Published by the American Physical Society2025 
    more » « less