Abstract Arboreal locomotion is precarious and places multiple challenges upon stability. Studies have shown that captive primates respond to narrower and steeper supports by flexing limb joints and adopting a compliant gait. We tested whether these same kinematic responses are adopted by wild primates freely ranging over a variety of supports in their natural habitats. We recorded five species of platyrrhines, five species of catarrhines, and four species of strepsirrhines with modified GoPro cameras and used remote measurement to quantify substrate characteristics. Video images were imported into ImageJ to measure the angular kinematics of limb joints during quadrupedal locomotion on a variety of arboreal supports. We statistically tested for associations between joint posture and substrate characteristics, and then disentangled the influence of phylogeny and substrate on limb joint kinematics using variation partitioning and redundancy analysis. Our results partially confirm previous kinematic studies and suggest variation in support orientation, more than diameter or compliance, influences quadrupedal gait kinematics. Phylogenetic relatedness explained more variation in the data than substrate properties. This suggests primates either prospectively choose relatively ‘safe’ substrates for locomotion, or that they possess locomotor adaptations independent of limb joint kinematics per se to overcome the challenges of the precarious arboreal environment.
more »
« less
The Stabilizing Function of the Tail During Arboreal Quadrupedalism
Abstract Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance. However, prior anatomical studies have found that arboreal taxa frequently have longer tails for their body size than their terrestrial counterparts, and prior laboratory studies of tail kinematics and the effects of tail reduction in focal taxa have broadly supported the hypothesis that the tail is functionally important for maintaining balance on narrow and mobile substrates. In this set of studies, we extend this work in two ways. First, we used a laboratory dataset on three-dimensional segmental kinematics and tail inertial properties in squirrel monkeys (Saimiri boliviensis) to investigate how tail angular momentum is modulated during steady-state locomotion on narrow supports. In the second study, we used a quantitative dataset on quadrupedal locomotion in wild platyrrhine monkeys to investigate how free-ranging arboreal animals adjust tail movements in response to substrate variation, focusing on kinematic measures validated in prior laboratory studies of tail mechanics (including the laboratory data presented). Our laboratory results show that S. boliviensis significantly increase average tail angular momentum magnitudes and amplitudes on narrow supports, and primarily regulate that momentum by adjusting the linear and angular velocity of the tail (rather than via changes in tail posture per se). We build on these findings in our second study by showing that wild platyrrhines responded to the precarity of narrow and mobile substrates by extending the tail and exaggerating tail displacements, providing ecological validity to the laboratory studies of tail mechanics presented here and elsewhere. In conclusion, our data support the hypothesis that the long and mobile tails of arboreal animals serve a biological role of enhancing stability when moving quadrupedally over narrow and mobile substrates. Tail angular momentum could be used to cancel out the angular momentum generated by other parts of the body during steady-state locomotion, thereby reducing whole-body angular momentum and promoting stability, and could also be used to mitigate the effects of destabilizing torques about the support should the animals encounter large, unexpected perturbations. Overall, these studies suggest that long and mobile tails should be considered among the fundamental suite of adaptations promoting safe and efficient arboreal locomotion.
more »
« less
- PAR ID:
- 10313928
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 61
- Issue:
- 2
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Much research on primate locomotor performance in arboreal settings focuses on how primate morphology allows them to navigate substrates that vary in diameter, orientation, and compliance. However, little prior research has considered how these and other environmental factors - such as substrate height and light availability - may also affect locomotor behavior by altering how risky a given substrate is perceived to be. To investigate the relationship between risk perception and locomotor performance, we video-recorded four species of wild lemur (Ranomafana National Park), three species of wild cercopithecoid monkeys (Kibale National Park), and four species of captive lemur (Duke Lemur Center). We test the general hypothesis that primates should change their gaits and engage in exploratory behaviors – using touch and sight as guides – to increase stability in precarious settings. Augmenting our prior study showing that some lemurs change their locomotion when moving high in the canopy, we present new data showing that wild lemurs and monkeys frequently cross gaps between substrates and transition between locomotor modes without pause. In the investigation on captive lemurs, we examine whether variations in branch diameter, compliance, orientation, and light availability influence the paths lemurs choose to take. Preliminary results suggest that lemurs tend to avoid the most precarious substrates (i.e., the most narrow and compliant) regardless of lighting conditions. Overall, this research indicates that primates are able to make quick and accurate judgements about locomotor safety in the context of ongoing arboreal locomotion.more » « less
-
Research on primates’ aptitude for navigating fine, compliant, and oblique branches has often focused on their postcranial morphology and locomotor mechanics. Here we aim to understand how primates perceive risk and make informed judgments to move safely. We video-recorded and digitized the locomotion of four lemur species (Ranomafana National Park) and 3 cercopithecoid monkeys (Kibale National Park). We test the general hypothesis that primates should change their gaits and engage in exploratory behaviors – using touch and sight as guides – to increase stability in precarious settings. Augmenting our prior study showing that some lemurs change their locomotion when moving high in the canopy, we present new data on the behavior of wild lemurs and monkeys as they cross gaps between substrates or switch between locomotor modes. They frequently cross gaps and transition between modes without pause, meaning they can accurately gauge their locomotor capacity before moving onto a new substrate. In an investigation on four species of captive lemurs (Duke Lemur Center), we examine how variations in substrate diameter, orientation, and compliance influence the paths lemurs choose to take. Preliminary results suggest that lemurs will tend to avoid the most precarious substrates in their paths, and future analysis will examine the role that light availability plays as well. Overall, this research highlights the importance of risk perception for robust locomotor performance while moving in arboreal environments.more » « less
-
Abstract Wild primates encounter complex matrices of substrates that differ in size, orientation, height, and compliance, and often move on multiple, discontinuous substrates within a single bout of locomotion. Our current understanding of primate gait is limited by artificial laboratory settings in which primate quadrupedal gait has primarily been studied. This study analyzes wildSaimiri sciureus(common squirrel monkey) gait on discontinuous substrates to capture the realistic effects of the complex arboreal habitat on walking kinematics. We collected high‐speed video footage at Tiputini Biodiversity Station, Ecuador between August and October 2017. Overall, the squirrel monkeys used more asymmetrical walking gaits than symmetrical gaits, and specifically asymmetrical lateral sequence walking gaits when moving across discontinuous substrates. When individuals used symmetrical gaits, they used diagonal sequence gaits more than lateral sequence gaits. In addition, individuals were more likely to change their footfall sequence during strides on discontinuous substrates. Squirrel monkeys increased the time lag between touchdowns both of ipsilaterally paired limbs (pair lag) and of the paired forelimbs (forelimb lag) when walking across discontinuous substrates compared to continuous substrates. Results indicate that gait flexibility and the ability to alter footfall patterns during quadrupedal walking may be critical for primates to safely move in their complex arboreal habitats. Notably, wild squirrel monkey quadrupedalism is diverse and flexible with high proportions of asymmetrical walking. Studying kinematics in the wild is critical for understanding the complexity of primate quadrupedalism.more » « less
-
Abstract ObjectivesAn accident during arboreal locomotion can lead to risky falls, but it remains unclear that the extent to which primates, as adept arborealists, change their locomotion in response to the perceived risk of moving on high supports in the tree canopy. By using more stable forms of locomotion on higher substrates, primates might avoid potentially fatal consequences. Materials and MethodsUsing high‐speed cameras, we recorded the quadrupedal locomotion of four wild lemur species—Eulemur rubriventer,Eulemur rufifrons, Hapalemur aureus, and Lemur catta(N = 113 total strides). We quantified the height, diameter, and angular orientation of locomotor supports using remote sensors and tested the influence of support parameters on gait kinematics, specifically predicting that in response to increasing substrate height, lemurs would decrease speed and stride frequency, but increase stride length and the mean number of supporting limbs. ResultsLemurs did not adjust stride frequency on substrates of varying height. Adjustments to speed, stride length, and the mean number of supporting limbs in response to varying height often ran counter to predictions. OnlyE. rubriventerdecreased speed and increased the mean number of supporting limbs on higher substrates. DiscussionResults suggest that quadrupedal walking is a relatively safe form of locomotion for lemurs, requiring subtle changes in gait to increase stability on higher—that is, potentially riskier—substrates. Continued investigation of the impact of height on locomotion will be important to determine how animals assess risk in their environment and how they choose to use this information to move more safely.more » « less
An official website of the United States government

