skip to main content

Title: Global transpiration data from sap flow measurements: the SAPFLUXNET database
Abstract. Plant transpiration links physiological responses ofvegetation to water supply and demand with hydrological, energy, and carbonbudgets at the land–atmosphere interface. However, despite being the mainland evaporative flux at the global scale, transpiration and its response toenvironmental drivers are currently not well constrained by observations.Here we introduce the first global compilation of whole-plant transpirationdata from sap flow measurements (SAPFLUXNET,, last access: 8 June 2021).We harmonized and quality-controlled individual datasets supplied bycontributors worldwide in a semi-automatic data workflow implemented in theR programming language. Datasets include sub-daily time series of sap flowand hydrometeorological drivers for one or more growing seasons, as well asmetadata on the stand characteristics, plant attributes, and technicaldetails of the measurements. SAPFLUXNET contains 202 globally distributeddatasets with sap flow time series for 2714 plants, mostly trees, of 174species. SAPFLUXNET has a broad bioclimatic coverage, withwoodland/shrubland and temperate forest biomes especially well represented(80 % of the datasets). The measurements cover a wide variety of standstructural characteristics and plant sizes. The datasets encompass theperiod between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data areavailable for most of the datasets, while on-site soil water content isavailable for 56 % of the datasets. Many datasets contain data for speciesthat make up 90 % or more of the total stand basal area, allowing theestimation of stand transpiration in diverse ecological settings. SAPFLUXNETadds to existing plant trait datasets, ecosystem flux networks, and remotesensing products to help increase our understanding of plant water use,plant responses to drought, and ecohydrological processes. SAPFLUXNET version0.1.5 is freely available from the Zenodo repository (; Poyatos et al., 2020a). The“sapfluxnetr” R package – designed to access, visualize, and processSAPFLUXNET data – is available from CRAN.  more » « less
Award ID(s):
1636476 1503912 1830131
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Earth System Science Data
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Terrestrial photosynthesis requires the evaporation of water (transpiration) in exchange for CO2needed to form sugars. The water for transpiration is drawn up through plant roots, stem, and branches via a water potential gradient. However, this flow of water—or sap ascent—requires energy to lift the water to the canopy and to overcome the resistance of the plant’s water transporting xylem. Here, we use a combination of field measurements of plant physiology (hydraulic conductivity) and state‐of‐the‐science global estimates of transpiration to calculate how much energy is passively harvested by plants to power the sap ascent pump across the world’s terrestrial vegetation. Globally, we find that 0.06 W/m2is consumed in sap ascent over forest dominated ecosystems or 9.4 PWh/yr (equal to global hydropower energy production). Though small in comparison to other components of the Earth’s surface energy budget, sap ascent work in forests represents 14.2% of the energy compared to the energy consumed to create sugars through photosynthesis, with values up to 18% in temperate rainforests. The power needed for sap ascent generally increases with photosynthesis, but is moderated by both climate and plant physiology, as the most work is consumed in regions with large transpiration fluxes (such as the moist tropics) and in areas where vegetation has low conductivity (such as temperate rainforests dominated by conifer trees). Here, we present a bottom‐up analysis of sap ascent work that demonstrates its significant role in plant function across the globe.

    more » « less
  2. Abstract

    Transpiration and stomatal conductance in deciduous needleleaf boreal forests of northern Siberia can be highly sensitive to water stress, permafrost thaw, and atmospheric dryness. Additionally, north‐eastern Siberian boreal forests are fire‐driven, and larch (Larixspp.) are the sole tree species. We examined differences in tree water use, stand characteristics, and stomatal responses to environmental drivers between high and low tree density stands that burned 76 years ago in north‐eastern Siberia. Our results provide process‐level insight to climate feedbacks related to boreal forest productivity, water cycles, and permafrost across Arctic regions. The high density stand had shallower permafrost thaw depths and deeper moss layers than the low density stand. Rooting depths and shallow root biomass were similar between stands. Daily transpiration was higher on average in the high‐density stand 0.12 L m−2 day−1(SE: 0.004) compared with the low density stand 0.10 L m−2 day−1(SE: 0.001) throughout the abnormally wet summer of 2016. Transpiration rates tended to be similar at both stands during the dry period in 2017 in both stands of 0.10 L m−2 day−1(SE: 0.002). The timing of precipitation impacted stomatal responses to environmental drivers, and the high density stand was more dependent on antecedent precipitation that occurred over longer periods in the past compared with the low density stand. Post‐fire tree density differences in plant–water relations may lead to different trajectories in plant mortality, water stress, and ecosystem water cycles across Siberian landscapes.

    more » « less
  3. Abstract

    The accurate estimation of plant transpiration is critical to the fields of hydrology, plant physiology and ecology. Among the various methods of measuring transpiration in the field, the sap flow methods based on head pulses offers a cost-effective and energy-efficient option to directly measure the plant-level movement of water through the hydraulically active tissue. While authors have identified several possible sources of error in these measurements, one of the most common sources is misalignment of the sap flow probes due to user error. Though the effects of probe misalignment are well documented, no device or technique has been universally adopted to ensure the proper installation of sap flow probes. In this paper we compare the magnitude of misalignment errors among a 5 mm thick drilling template (DT), a 10 mm thick DT, and a custom designed, field-portable drill press. The different techniques were evaluated in the laboratory using a 7.5 cm wood block and in the field, comparing differences in measured sap flow. Based on analysis of holes drilled in the wood block, we found that the portable drill press was most effective in assuring that drill holes remained parallel, even at 7.5 cm depth. In field installations, nearly 50% of holes drilled with a 5 mm template needed to be redrilled while none needed to be when drilled with the drill press. Widespread use of a portable drill press when implementing the heat pulse method would minimize alignment uncertainty and allow a clearer understanding of other sources of uncertainty due to variability in tree species, age, or external drivers or transpiration.

    more » « less
  4. Abstract

    Plant transpiration is the largest evaporative flux from most vegetated ecosystems, playing a dominant role in energy balance, water and element cycling, ecosystem services and water security. Quantification of plant‐level transpiration, for example sap flux, is essential to land managers and scientists. Thermal dissipation probes (TDP) are reliable and affordable tools for measuring sap flux, but difficulties in replicable data processing often serve as a barrier to their use and interpretation of data.

    AquaFluxis anrpackage designed to efficiently process and analyse TDP data. This program maximizes data collection by continually importing raw TDP values and alerting the user of any malfunctioning sensors. Data processing is expedited through a user‐friendly graphical interface, predictive algorithms and data recovery options.AquaFlux's post‐processing options address gapfilling, radial trends in sap flux across sapwood and rescaling from points to whole stems.

    To ensure reproducibility and transparency, all data processing steps are automatically documented, highlighting the impact of user decisions. AquaFlux confirms to emerging best practices in data science and TDP data processing and analyses.

    Understanding spatiotemporal patterns of sap flux and how they relate to plant traits is essential for enhancing agricultural productivity, optimizing land management planning, ecological studies and improving climate modelling. AquaFlux provides a robust tool to facilitate predictive understanding of plant transpiration.

    more » « less
  5. Fungal species involved in Esca cause the formation of grapevine wood necroses. It results in the deterioration of vascular network transport capacity and the disturbance of the physiological processes, leading to gradual or sudden grapevine death. Herein, for two consecutive growing seasons, a detailed analysis of the structural (wood necrosis and leaf discoloration) and physiological parameters related to the water use of healthy and esca-symptomatic grapevines was conducted. Measurements were carried out on 17-year-old grapevines that expressed, or not, Esca-leaf symptoms in a vineyard of the Bordeaux region (France). Whole-plant transpiration was recorded continuously from pre-veraison to harvest, using noninvasive sap flow sensors. Whole-plant transpiration was systematically about 40–50% lower in Esca-diseased grapevines compared with controls, and this difference can be observed around 2 weeks before the first Esca-foliar symptoms appeared in the vineyard. Unlike grapevine sap flow disruption, structural (e.g., leaf discolorations), functional (e.g., stomatal conductance, photosynthetic activity, phenolic compounds), and genetic (e.g., expression of leaf-targeted genes) plant responses were only significantly impacted by Esca at the onset and during leaf symptoms development. We conclude that sap flow dynamic, which was related to a high level of a white-rot necrosis, provides a useful tool to predict plant disorders due to Esca-grapevine disease. 
    more » « less