skip to main content


Title: Sap Flow Disruption in Grapevine Is the Early Signal Predicting the Structural, Functional, and Genetic Responses to Esca Disease
Fungal species involved in Esca cause the formation of grapevine wood necroses. It results in the deterioration of vascular network transport capacity and the disturbance of the physiological processes, leading to gradual or sudden grapevine death. Herein, for two consecutive growing seasons, a detailed analysis of the structural (wood necrosis and leaf discoloration) and physiological parameters related to the water use of healthy and esca-symptomatic grapevines was conducted. Measurements were carried out on 17-year-old grapevines that expressed, or not, Esca-leaf symptoms in a vineyard of the Bordeaux region (France). Whole-plant transpiration was recorded continuously from pre-veraison to harvest, using noninvasive sap flow sensors. Whole-plant transpiration was systematically about 40–50% lower in Esca-diseased grapevines compared with controls, and this difference can be observed around 2 weeks before the first Esca-foliar symptoms appeared in the vineyard. Unlike grapevine sap flow disruption, structural (e.g., leaf discolorations), functional (e.g., stomatal conductance, photosynthetic activity, phenolic compounds), and genetic (e.g., expression of leaf-targeted genes) plant responses were only significantly impacted by Esca at the onset and during leaf symptoms development. We conclude that sap flow dynamic, which was related to a high level of a white-rot necrosis, provides a useful tool to predict plant disorders due to Esca-grapevine disease.  more » « less
Award ID(s):
1754893
NSF-PAR ID:
10359221
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
12
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spotted lanternfly (SLF; Lycorma delicatula White; Hemiptera: Fulgoridae) invaded the US from Asia and was first detected in 2014; currently, populations have established in 14 states primarily in the Northeast and Mid-Atlantic. It feeds voraciously on phloem sap from a broad range of host plants, with a preference for tree of heaven ( Ailanthus altissima [Sapindales: Simaroubaceae]), grapevines ( Vitis spp. [Vitales: Vitaceae]), and several common hardwood tree species. We evaluated the impacts of fourth instars and adults confined to a single branch or whole trees on gas exchange attributes (carbon assimilation [photosynthetic rate], transpiration and stomatal conductance), selected nutrients, and diameter growth using young saplings of four host tree species planted in a common garden. In general, the effects of adults on trees were greater than nymphs, although there was variation depending on tree species, pest density, and time post-infestation. Nymphs on a single branch of red maple ( Acer rubrum [Sapindales: Sapindaceae]), or silver maple ( Acer saccharinum [Sapindales: Sapindaceae]) at three densities (0, 15, or 30) had no significant effects on gas exchange. In contrast, 40 adults confined to a single branch of red or silver maple rapidly suppressed gas exchange and reduced nitrogen concentration in leaves; soluble sugars in branch wood were reduced in the fall for silver maple and in the following spring for red maple. Fourth instars confined to whole silver maple trees reduced soluble sugars in leaves and branch wood, and reduced tree diameter growth by >50% during the next growing season. In contrast, fourth instars in whole tree enclosures had no effects on black walnut ( Juglans nigra [Fagales: Juglandaceae]). SLF enclosed on tree of heaven at 80 adults per tree suppressed gas exchange after two weeks of feeding, but did not alter non-structural carbohydrates, nitrogen concentrations, or tree growth. Results suggest that moderate to heavy feeding by SLF on young maple saplings may impair tree growth, which could have implications for production nurseries and forest managers. 
    more » « less
  2. Abstract

    Plant transpiration depends on environmental conditions, and soil water availability is its primary control under water deficit conditions. In this study, we improve a simplified process‐based model (hereafter “BTA”) by including soil water potential (ψsoil) to explicitly represent the dependence of plant transpiration on root‐zone moisture conditions. The improved model is denoted as the BTA‐ψ model. We assessed the performance of the BTA and BTA‐ψ models in a subtropical monsoon climate and a Mediterranean climate with different levels of water stress. The BTA model performed reasonably in estimating daily and hourly transpiration under sufficient water conditions, but it failed during dry periods. Overall, the BTA‐ψ model provided a significant improvement for estimating transpiration under a wide range of soil moisture conditions. Although both models could estimate transpiration (sap flow) at night, BTA‐ψ was superior to BTA in this regard. Species differences in the calibrated parameters of both models were consistent with leaf‐level photosynthetic measurements on each species, as expected given the physiological basis of these parameters. With a simplified representation of physiological regulation and reasonable performance across a range of soil moisture conditions, the BTA‐ψ model provides a useful alternative to purely empirical models for modelling transpiration.

     
    more » « less
  3. Abstract

    The accurate estimation of plant transpiration is critical to the fields of hydrology, plant physiology and ecology. Among the various methods of measuring transpiration in the field, the sap flow methods based on head pulses offers a cost-effective and energy-efficient option to directly measure the plant-level movement of water through the hydraulically active tissue. While authors have identified several possible sources of error in these measurements, one of the most common sources is misalignment of the sap flow probes due to user error. Though the effects of probe misalignment are well documented, no device or technique has been universally adopted to ensure the proper installation of sap flow probes. In this paper we compare the magnitude of misalignment errors among a 5 mm thick drilling template (DT), a 10 mm thick DT, and a custom designed, field-portable drill press. The different techniques were evaluated in the laboratory using a 7.5 cm wood block and in the field, comparing differences in measured sap flow. Based on analysis of holes drilled in the wood block, we found that the portable drill press was most effective in assuring that drill holes remained parallel, even at 7.5 cm depth. In field installations, nearly 50% of holes drilled with a 5 mm template needed to be redrilled while none needed to be when drilled with the drill press. Widespread use of a portable drill press when implementing the heat pulse method would minimize alignment uncertainty and allow a clearer understanding of other sources of uncertainty due to variability in tree species, age, or external drivers or transpiration.

     
    more » « less
  4. The U.S. wine and grape industry loses $3B annually due to viral diseases including grapevine leafroll-associated virus complex 3 (GLRaV-3). Current detection methods are labor-intensive and expensive. GLRaV-3 has a latent period in which the vines are infected but do not display visible symptoms, making it an ideal model to evaluate the scalability of imaging spectroscopy-based disease detection. The NASA Airborne Visible and Infrared Imaging Spectrometer Next Generation was deployed to detect GLRaV-3 in Cabernet Sauvignon grapevines in Lodi, CA in September 2020. Foliage was removed from the vines as part of mechanical harvest soon after image acquisition. In September of both 2020 and 2021, industry collaborators scouted 317 hectares on a vine-by-vine basis for visible viral symptoms and collected a subset for molecular confirmation testing. Symptomatic grapevines identified in 2021 were assumed to have been latently infected at the time of image acquisition. Random forest models were trained on a spectroscopic signal of noninfected and GLRaV-3 infected grapevines balanced with synthetic minority oversampling of noninfected and GLRaV-3 infected grapevines. The models were able to differentiate between noninfected and GLRaV-3 infected vines both pre- and postsymptomatically at 1 to 5 m resolution. The best-performing models had 87% accuracy distinguishing between noninfected and asymptomatic vines, and 85% accuracy distinguishing between noninfected and asymptomatic + symptomatic vines. The importance of nonvisible wavelengths suggests that this capacity is driven by disease-induced changes to plant physiology. The results lay a foundation for using the forthcoming hyperspectral satellite Surface Biology and Geology for regional disease monitoring in grapevine and other crop species.

    [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

     
    more » « less
  5. Abstract. Plant transpiration links physiological responses ofvegetation to water supply and demand with hydrological, energy, and carbonbudgets at the land–atmosphere interface. However, despite being the mainland evaporative flux at the global scale, transpiration and its response toenvironmental drivers are currently not well constrained by observations.Here we introduce the first global compilation of whole-plant transpirationdata from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021).We harmonized and quality-controlled individual datasets supplied bycontributors worldwide in a semi-automatic data workflow implemented in theR programming language. Datasets include sub-daily time series of sap flowand hydrometeorological drivers for one or more growing seasons, as well asmetadata on the stand characteristics, plant attributes, and technicaldetails of the measurements. SAPFLUXNET contains 202 globally distributeddatasets with sap flow time series for 2714 plants, mostly trees, of 174species. SAPFLUXNET has a broad bioclimatic coverage, withwoodland/shrubland and temperate forest biomes especially well represented(80 % of the datasets). The measurements cover a wide variety of standstructural characteristics and plant sizes. The datasets encompass theperiod between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data areavailable for most of the datasets, while on-site soil water content isavailable for 56 % of the datasets. Many datasets contain data for speciesthat make up 90 % or more of the total stand basal area, allowing theestimation of stand transpiration in diverse ecological settings. SAPFLUXNETadds to existing plant trait datasets, ecosystem flux networks, and remotesensing products to help increase our understanding of plant water use,plant responses to drought, and ecohydrological processes. SAPFLUXNET version0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The“sapfluxnetr” R package – designed to access, visualize, and processSAPFLUXNET data – is available from CRAN. 
    more » « less