skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Omics community detection using multi-resolution clustering
Abstract Motivation The discovery of biologically interpretable and clinically actionable communities in heterogeneous omics data is a necessary first step toward deriving mechanistic insights into complex biological phenomena. Here, we present a novel clustering approach, omeClust, for community detection in omics profiles by simultaneously incorporating similarities among measurements and the overall complex structure of the data. Results We show that omeClust outperforms published methods in inferring the true community structure as measured by both sensitivity and misclassification rate on simulated datasets. We further validated omeClust in diverse, multiple omics datasets, revealing new communities and functionally related groups in microbial strains, cell line gene expression patterns and fetal genomic variation. We also derived enrichment scores attributable to putatively meaningful biological factors in these datasets that can serve as hypothesis generators facilitating new sets of testable hypotheses. Availability and implementation omeClust is open-source software, and the implementation is available online at http://github.com/omicsEye/omeClust. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
2028280 2109688
PAR ID:
10314011
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Wren, Jonathan
Date Published:
Journal Name:
Bioinformatics
Volume:
37
Issue:
20
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robinson, Peter (Ed.)
    Abstract Motivation Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous diseases like cancer in the era of precision medicine. With the advent of high throughput technologies, more comprehensive multi-omics data is now available that can effectively link the genotype to phenotype. However, the interactive relation of multi-omics datasets makes it particularly challenging to incorporate different biological layers to discover the coherent biological signatures and predict phenotypic outcomes. In this study, we introduce omicsGAN, a generative adversarial network model to integrate two omics data and their interaction network. The model captures information from the interaction network as well as the two omics datasets and fuse them to generate synthetic data with better predictive signals. Results Large-scale experiments on The Cancer Genome Atlas breast cancer, lung cancer and ovarian cancer datasets validate that (i) the model can effectively integrate two omics data (e.g. mRNA and microRNA expression data) and their interaction network (e.g. microRNA-mRNA interaction network). The synthetic omics data generated by the proposed model has a better performance on cancer outcome classification and patients survival prediction compared to original omics datasets. (ii) The integrity of the interaction network plays a vital role in the generation of synthetic data with higher predictive quality. Using a random interaction network does not allow the framework to learn meaningful information from the omics datasets; therefore, results in synthetic data with weaker predictive signals. Availability and implementation Source code is available at: https://github.com/CompbioLabUCF/omicsGAN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Mathelier, Anthony (Ed.)
    Abstract Motivation Methods to model dynamic changes in gene expression at a genome-wide level are not currently sufficient for large (temporally rich or single-cell) datasets. Variational autoencoders offer means to characterize large datasets and have been used effectively to characterize features of single-cell datasets. Here, we extend these methods for use with gene expression time series data. Results We present RVAgene: a recurrent variational autoencoder to model gene expression dynamics. RVAgene learns to accurately and efficiently reconstruct temporal gene profiles. It also learns a low dimensional representation of the data via a recurrent encoder network that can be used for biological feature discovery, and from which we can generate new gene expression data by sampling the latent space. We test RVAgene on simulated and real biological datasets, including embryonic stem cell differentiation and kidney injury response dynamics. In all cases, RVAgene accurately reconstructed complex gene expression temporal profiles. Via cross validation, we show that a low-error latent space representation can be learnt using only a fraction of the data. Through clustering and gene ontology term enrichment analysis on the latent space, we demonstrate the potential of RVAgene for unsupervised discovery. In particular, RVAgene identifies new programs of shared gene regulation of Lox family genes in response to kidney injury. Availability and implementation All datasets analyzed in this manuscript are publicly available and have been published previously. RVAgene is available in Python, at GitHub: https://github.com/maclean-lab/RVAgene; Zenodo archive: http://doi.org/10.5281/zenodo.4271097. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Valencia, Alfonso (Ed.)
    Abstract Motivation Dimension reduction techniques are widely used to interpret high-dimensional biological data. Features learned from these methods are used to discover both technical artifacts and novel biological phenomena. Such feature discovery is critically importent in analysis of large single-cell datasets, where lack of a ground truth limits validation and interpretation. Transfer learning (TL) can be used to relate the features learned from one source dataset to a new target dataset to perform biologically driven validation by evaluating their use in or association with additional sample annotations in that independent target dataset. Results We developed an R/Bioconductor package, projectR, to perform TL for analyses of genomics data via TL of clustering, correlation and factorization methods. We then demonstrate the utility TL for integrated data analysis with an example for spatial single-cell analysis. Availability and implementation projectR is available on Bioconductor and at https://github.com/genesofeve/projectR. Contact gsteinobrien@jhmi.edu or ejfertig@jhmi.edu Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Cowen, Lenore (Ed.)
    Abstract Motivation Biclustering has emerged as a powerful approach to identifying functional patterns in complex biological data. However, existing tools are limited by their accuracy and efficiency to recognize various kinds of complex biclusters submerged in ever large datasets. We introduce a novel fast and highly accurate algorithm RecBic to identify various forms of complex biclusters in gene expression datasets. Results We designed RecBic to identify various trend-preserving biclusters, particularly, those with narrow shapes, i.e. clusters where the number of genes is larger than the number of conditions/samples. Given a gene expression matrix, RecBic starts with a column seed, and grows it into a full-sized bicluster by simply repetitively comparing real numbers. When tested on simulated datasets in which the elements of implanted trend-preserving biclusters and those of the background matrix have the same distribution, RecBic was able to identify the implanted biclusters in a nearly perfect manner, outperforming all the compared salient tools in terms of accuracy and robustness to noise and overlaps between the clusters. Moreover, RecBic also showed superiority in identifying functionally related genes in real gene expression datasets. Availability and implementation Code, sample input data and usage instructions are available at the following websites. Code: https://github.com/holyzews/RecBic/tree/master/RecBic/. Data: http://doi.org/10.5281/zenodo.3842717. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Kuijjer, Marieke (Ed.)
    Abstract Motivation Biological processes are regulated by underlying genes and their interactions that form gene regulatory networks (GRNs). Dysregulation of these GRNs can cause complex diseases such as cancer, Alzheimer’s and diabetes. Hence, accurate GRN inference is critical for elucidating gene function, allowing for the faster identification and prioritization of candidate genes for functional investigation. Several statistical and machine learning-based methods have been developed to infer GRNs based on biological and synthetic datasets. Here, we developed a method named AGRN that infers GRNs by employing an ensemble of machine learning algorithms. Results From the idea that a single method may not perform well on all datasets, we calculate the gene importance scores using three machine learning methods—random forest, extra tree and support vector regressors. We calculate the importance scores from Shapley Additive Explanations, a recently published method to explain machine learning models. We have found that the importance scores from Shapley values perform better than the traditional importance scoring methods based on almost all the benchmark datasets. We have analyzed the performance of AGRN using the datasets from the DREAM4 and DREAM5 challenges for GRN inference. The proposed method, AGRN—an ensemble machine learning method with Shapley values, outperforms the existing methods both in the DREAM4 and DREAM5 datasets. With improved accuracy, we believe that AGRN inferred GRNs would enhance our mechanistic understanding of biological processes in health and disease. Availabilityand implementation https://github.com/DuaaAlawad/AGRN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less