skip to main content


Title: Analyzing the Feasibility and Generalizability of Fingerprinting Internet of Things Devices
Abstract In recent years, we have seen rapid growth in the use and adoption of Internet of Things (IoT) devices. However, some loT devices are sensitive in nature, and simply knowing what devices a user owns can have security and privacy implications. Researchers have, therefore, looked at fingerprinting loT devices and their activities from encrypted network traffic. In this paper, we analyze the feasibility of fingerprinting IoT devices and evaluate the robustness of such fingerprinting approach across multiple independent datasets — collected under different settings. We show that not only is it possible to effectively fingerprint 188 loT devices (with over 97% accuracy), but also to do so even with multiple instances of the same make-and-model device. We also analyze the extent to which temporal, spatial and data-collection-methodology differences impact fingerprinting accuracy. Our analysis sheds light on features that are more robust against varying conditions. Lastly, we comprehensively analyze the performance of our approach under an open-world setting and propose ways in which an adversary can enhance their odds of inferring additional information about unseen devices (e.g., similar devices manufactured by the same company).  more » « less
Award ID(s):
1849997 1747555
NSF-PAR ID:
10314043
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2022
Issue:
2
ISSN:
2299-0984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vision Transformer (ViT) has demonstrated promising performance in various computer vision tasks, and recently attracted a lot of research attention. Many recent works have focused on proposing new architectures to improve ViT and deploying it into real-world applications. However, little effort has been made to analyze and understand ViT’s architecture design space and its implication of hardware-cost on different devices. In this work, by simply scaling ViT’s depth, width, input size, and other basic configurations, we show that a scaled vanilla ViT model without bells and whistles can achieve comparable or superior accuracy-efficiency trade-off than most of the latest ViT variants. Specifically, compared to DeiT-Tiny, our scaled model achieves a\(\uparrow 1.9\% \)higher ImageNet top-1 accuracy under the same FLOPs and a\(\uparrow 3.7\% \)better ImageNet top-1 accuracy under the same latency on an NVIDIA Edge GPU TX2. Motivated by this, we further investigate the extracted scaling strategies from the following two aspects: (1) “can these scaling strategies be transferred across different real hardware devices?”; and (2) “can these scaling strategies be transferred to different ViT variants and tasks?”. For (1), our exploration, based on various devices with different resource budgets, indicates that the transferability effectiveness depends on the underlying device together with its corresponding deployment tool; for (2), we validate the effective transferability of the aforementioned scaling strategies obtained from a vanilla ViT model on top of an image classification task to the PiT model, a strong ViT variant targeting efficiency, as well as object detection and video classification tasks. In particular, when transferred to PiT, our scaling strategies lead to a boosted ImageNet top-1 accuracy of from\(74.6\% \)to\(76.7\% \)(\(\uparrow 2.1\% \)) under the same 0.7G FLOPs; and when transferred to the COCO object detection task, the average precision is boosted by\(\uparrow 0.7\% \)under a similar throughput on a V100 GPU.

     
    more » « less
  2. Recent research has shown that in-network observers of WiFi communication (i.e., observers who have joined the WiFi network) can obtain much information regarding the types, user identities, and activities of Internet-of-Things (IoT) devices in the network. What has not been explored is the question of how much information can be inferred by an out-of-network observer who does not have access to the WiFi network. This attack scenario is more realistic and much harder to defend against, thus imposes a real threat to user privacy. In this paper, we investigate privacy leakage derived from an out-of-network traffic eavesdropper on the encrypted WiFi traffic of popular IoT devices. We instrumented a testbed of 12 popular IoT devices and evaluated multiple machine learning methods for fingerprinting and inferring what IoT devices exist in a WiFi network. By only exploiting the WiFi frame header information, we have achieved 95% accuracy in identifying the devices and often their working status. This study demonstrates that information leakage and privacy attack is a real threat for WiFi networks and IoT applications. 
    more » « less
  3. The Internet-of-Things (IoT) has brought in new challenges in device identification --what the device is, and authentication --is the device the one it claims to be. Traditionally, the authentication problem is solved by means of a cryptographic protocol. However, the computational complexity of cryptographic protocols and/or problems related to key management, render almost all cryptography based authentication protocols impractical for IoT. The problem of device identification is, on the other hand, sadly neglected. Almost always an artificially created identity is softly associated with the device. We believe that device fingerprinting can be used to solve both these problems effectively. In this work, we present a methodology to perform IoT device behavioral fingerprinting that can be employed to undertake strong device identification. A device behavior is approximated using features extracted from the network traffic of the device. These features are used to train a machine learning model that can be used to detect similar device-types. We validate our approach using five-fold cross validation; we report a identification rate of 93-100 and a mean accuracy of 99%, across all our experiments. Furthermore, we show preliminary results for fingerprinting device categories, i.e., identifying different devices having similar functionality. 
    more » « less
  4. null (Ed.)
    Edge intelligence (EI) has received a lot of interest because it can reduce latency, increase efficiency, and preserve privacy. More significantly, as the Internet of Things (IoT) has proliferated, billions of portable and embedded devices have been interconnected, producing zillions of gigabytes on edge networks. Thus, there is an immediate need to push AI (artificial intelligence) breakthroughs within edge networks to achieve the full promise of edge data analytics. EI solutions have supported digital technology workloads and applications from the infrastructure level to edge networks; however, there are still many challenges with the heterogeneity of computational capabilities and the spread of information sources. We propose a novel event-driven deep-learning framework, called EDL-EI (event-driven deep learning for edge intelligence), via the design of a novel event model by defining events using correlation analysis with multiple sensors in real-world settings and incorporating multi-sensor fusion techniques, a transformation method for sensor streams into images, and lightweight 2-dimensional convolutional neural network (CNN) models. To demonstrate the feasibility of the EDL-EI framework, we presented an IoT-based prototype system that we developed with multiple sensors and edge devices. To verify the proposed framework, we have a case study of air-quality scenarios based on the benchmark data provided by the USA Environmental Protection Agency for the most polluted cities in South Korea and China. We have obtained outstanding predictive accuracy (97.65% and 97.19%) from two deep-learning models on the cities’ air-quality patterns. Furthermore, the air-quality changes from 2019 to 2020 have been analyzed to check the effects of the COVID-19 pandemic lockdown. 
    more » « less
  5. The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous data in IoT applications. However, the complexity-accuracy-delay dilemma persists: Complex DNN models offer higher accuracy, but typical IoT devices can barely afford the computation load, and the remedy of offloading the load to the cloud incurs long delay. In this article, we address this challenge by proposing an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first construct multiple anomaly detection DNN models with increasing complexity and associate each of them to a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network . We also incorporate a parallelism policy training method to accelerate the training process by taking advantage of distributed models. We build an HEC testbed using real IoT devices and implement and evaluate our contextual-bandit approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset and achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than the best (but inflexible) scheme. 
    more » « less