skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sampling and interpolation of cumulative distribution functions of Cantor sets in [0, 1]
Abstract Cantor sets are constructed from iteratively removing sections of intervals. This process yields a cumulative distribution function (CDF), constructed from the invariant Borel probability measure associated with their iterated function systems. Under appropriate assumptions, we identify sampling schemes of such CDFs, meaning that the underlying Cantor set can be reconstructed from sufficiently many samples of its CDF. To this end, we prove that two Cantor sets have almost-nowhere intersection with respect to their corresponding invariant measures.  more » « less
Award ID(s):
1830254 1934884
PAR ID:
10314055
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Demonstratio Mathematica
Volume:
54
Issue:
1
ISSN:
2391-4661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study homeomorphisms of a Cantor set with$$k$$($$k<+\infty$$) minimal invariant closed (but not open) subsets; we also study crossed product C*-algebras associated to these Cantor systems and certain of their orbit-cut sub-C*-algebras. In the case where$$k\geq 2$$, the crossed product C*-algebra is stably finite, has stable rank 2, and has real rank 0 if in addition$$(X,\unicode[STIX]{x1D70E})$$is aperiodic. The image of the index map is connected to certain directed graphs arising from the Bratteli–Vershik–Kakutani model of the Cantor system. Using this, it is shown that the ideal of the Bratteli diagram (of the Bratteli–Vershik–Kakutani model) must have at least$$k$$vertices at each level, and the image of the index map must consist of infinitesimals. 
    more » « less
  2. Abstract A Cantor series expansion for a real number x with respect to a basic sequence $$Q=(q_1,q_2,\dots )$$ , where $$q_i \geq 2$$ , is a generalization of the base b expansion to an infinite sequence of bases. Ki and Linton in 1994 showed that for ordinary base b expansions the set of normal numbers is a $$\boldsymbol {\Pi }^0_3$$ -complete set, establishing the exact complexity of this set. In the case of Cantor series there are three natural notions of normality: normality, ratio normality, and distribution normality. These notions are equivalent for base b expansions, but not for more general Cantor series expansions. We show that for any basic sequence the set of distribution normal numbers is $$\boldsymbol {\Pi }^0_3$$ -complete, and if Q is $$1$$ -divergent then the sets of normal and ratio normal numbers are $$\boldsymbol {\Pi }^0_3$$ -complete. We further show that all five non-trivial differences of these sets are $$D_2(\boldsymbol {\Pi }^0_3)$$ -complete if $$\lim _i q_i=\infty $$ and Q is $$1$$ -divergent. This shows that except for the trivial containment that every normal number is ratio normal, these three notions are as independent as possible. 
    more » « less
  3. Invariant sets are essential for understanding the stability and safety of nonlinear systems. However, certifying the existence of a positive invariant set for a nonlinear model is difficult and often requires knowledge of the system’s dynamic model. This paper presents a data driven method to certify a positive invariant set for an unknown, discrete, nonlinear system. A triangulation of a subset of the state space is used to query data points. Then, linear programming is used to create a continuous piecewise affine function that fulfills the criteria of the Extended Invariant Set Principle by leveraging an inequality error bound that uses the Lipschitz constant of the unknown system. Numerical results demonstrate the program’s ability to certify positive invariant sets from sampled data. 
    more » « less
  4. In this note we provide a quasisymmetric taming of uniformly perfect and uniformly disconnected sets that generalizes a result of MacManus [Rev. Mat. Iberoamericana 15 (1999), pp. 267–277] from 2 to higher dimensions. In particular, we show that a compact subset of R n \mathbb {R}^n is uniformly perfect and uniformly disconnected if and only if it is ambiently quasiconformal to the standard Cantor set C \mathcal {C} in R n + 1 \mathbb {R}^{n+1} . 
    more » « less
  5. One-bit massive MIMO has gained much attention in the areas of wireless communication and sensing. Among the various receiver designs, the maximum-likelihood-based receivers achieve state-of-the-art performance. Through this work we provide both analytical insight into the likelihood formulation, and develop a one-bit MIMO receiver, motivated specifically from this analysis. In particular, (i) Properties of the original Gaussian CDF based likelihood function are analyzed, culminating in an improved gradient descent (GD) algorithm for one-bit MIMO. (ii) This improved GD update rule is further enhanced through an accelerated GD method, improving convergence performance. (iii) The likelihood analysis is extended to an effective surrogate function for the Gaussian CDF, i.e., the logistic regression (LR). The presented analytical framework for the CDF also serves as a robust mathematical model to explain the enhanced performance of the LR, when utilized as a surrogate likelihood. (iv) Detection from a finite M-QAM constellation is incorporated by introducing a Gaussian denoiser to project the detected symbols onto the M-QAM subspace. This is implemented as a novel, unfolded, DNN architecture for one-bit detection. Through our experimental validation we demonstrate results on par with the current state- of-the-art methods for one-bit MIMO detection. 
    more » « less