skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: C*-algebras of a Cantor system with finitely many minimal subsets: structures, K-theories, and the index map
We study homeomorphisms of a Cantor set with$$k$$($$k<+\infty$$) minimal invariant closed (but not open) subsets; we also study crossed product C*-algebras associated to these Cantor systems and certain of their orbit-cut sub-C*-algebras. In the case where$$k\geq 2$$, the crossed product C*-algebra is stably finite, has stable rank 2, and has real rank 0 if in addition$$(X,\unicode[STIX]{x1D70E})$$is aperiodic. The image of the index map is connected to certain directed graphs arising from the Bratteli–Vershik–Kakutani model of the Cantor system. Using this, it is shown that the ideal of the Bratteli diagram (of the Bratteli–Vershik–Kakutani model) must have at least$$k$$vertices at each level, and the image of the index map must consist of infinitesimals.  more » « less
Award ID(s):
1800882
PAR ID:
10482210
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
Volume:
41
Issue:
5
ISSN:
0143-3857
Page Range / eLocation ID:
1296 to 1341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We provide a uniform bound on the partial sums of multiplicative functions under very general hypotheses. As an application, we give a nearly optimal estimate for the count of$$n \le x$$for which the Alladi–Erdős function$$A(n) = \sum_{p^k \parallel n} k p$$takes values in a given residue class moduloq, whereqvaries uniformly up to a fixed power of$$\log x$$. We establish a similar result for the equidistribution of the Euler totient function$$\phi(n)$$among the coprime residues to the ‘correct’ moduliqthat vary uniformly in a similar range and also quantify the failure of equidistribution of the values of$$\phi(n)$$among the coprime residue classes to the ‘incorrect’ moduli. 
    more » « less
  2. Abstract Our work is motivated by obtaining solutions to the quantum reflection equation (qRE) by categorical methods. To start, given a braided monoidal category$${\mathcal {C}}$$and$${\mathcal {C}}$$-module category$${\mathcal {M}}$$, we introduce a version of the Drinfeld center$${\mathcal {Z}}({\mathcal {C}})$$of$${\mathcal {C}}$$adapted for$${\mathcal {M}}$$; we refer to this category as thereflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$of$${\mathcal {M}}$$. Just like$${\mathcal {Z}}({\mathcal {C}})$$is a canonical braided monoidal category attached to$${\mathcal {C}}$$, we show that$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$is a canonical braided module category attached to$${\mathcal {M}}$$; its properties are investigated in detail. Our second goal pertains to when$${\mathcal {C}}$$is the category of modules over a quasitriangular Hopf algebraH, and$${\mathcal {M}}$$is the category of modules over anH-comodule algebraA. We show that the reflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$here is equivalent to a category of modules over an explicit algebra, denoted by$$R_H(A)$$, which we call thereflective algebraofA. This result is akin to$${\mathcal {Z}}({\mathcal {C}})$$being represented by the Drinfeld double$${\operatorname {Drin}}(H)$$ofH. We also study the properties of reflective algebras. Our third set of results is also in the Hopf setting above. We show that reflective algebras are quasitriangularH-comodule algebras, and we examine their corresponding quantumK-matrices; this yields solutions to the qRE. We also establish that the reflective algebra$$R_H(\mathbb {k})$$is an initial object in the category of quasitriangularH-comodule algebras, where$$\mathbb {k}$$is the ground field. The case whenHis the Drinfeld double of a finite group is illustrated. 
    more » « less
  3. Abstract We prove novel asymptotic freeness results in tracial ultraproduct von Neumann algebras. In particular, we show that whenever$$M = M_1 \ast M_2$$is a tracial free product von Neumann algebra and$$u_1 \in \mathscr U(M_1)$$,$$u_2 \in \mathscr U(M_2)$$are Haar unitaries, the relative commutants$$\{u_1\}' \cap M^{\mathcal U}$$and$$\{u_2\}' \cap M^{\mathcal U}$$are freely independent in the ultraproduct$$M^{\mathcal U}$$. Our proof relies on Mei–Ricard’s results [MR16] regarding$$\operatorname {L}^p$$-boundedness (for all$$1 < p < +\infty $$) of certain Fourier multipliers in tracial amalgamated free products von Neumann algebras. We derive two applications. Firstly, we obtain a general absorption result in tracial amalgamated free products that recovers several previous maximal amenability/Gamma absorption results. Secondly, we prove a new lifting theorem which we combine with our asymptotic freeness results and Chifan–Ioana–Kunnawalkam Elayavalli’s recent construction [CIKE22] to provide the first example of a$$\mathrm {II_1}$$factor that does not have property Gamma and is not elementary equivalent to any free product of diffuse tracial von Neumann algebras. 
    more » « less
  4. Abstract When$$k\geqslant 4$$and$$0\leqslant d\leqslant (k-2)/4$$, we consider the system of Diophantine equations\begin{align*}x_1^j+\ldots +x_k^j=y_1^j+\ldots +y_k^j\quad (1\leqslant j\leqslant k,\, j\ne k-d).\end{align*}We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when$$d=o\!\left(k^{1/4}\right)$$. 
    more » « less
  5. Abstract We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $$X_k$$ is the connected sum of k copies of $$\mathbb CP^2$$for$$k \ge 4$$, then we prove that the maximum degree of an L-Lipschitz self-map of $$X_k$$ is between $$C_1 L^4 (\log L)^{-4}$$ and $$C_2 L^4 (\log L)^{-1/2}$$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $$\sim L^n$$. For formal but nonscalable simply connectedn-manifolds, the maximal degree grows roughly like $$L^n (\log L)^{-\theta (1)}$$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $$L^\alpha $$ for some $$\alpha < n$$. 
    more » « less