skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 15 until 2:00 AM ET on Friday, January 16 due to maintenance. We apologize for the inconvenience.


Title: Tools for Biomakers: Reviewing Affordances and Challenges for K-12 Hands-On Making with Biology
While many digital or physical tools and construction kits have been developed for young makers, far fewer developments have focused on making with living materials, at DNA and cellular scales. In this paper, we review the affordances of various hands-on simulation tools and wet labs for K-12-aged biomakers to be used in school, home and science centers. We discuss how making with biology requires broadened conceptualizations of perceptibility, tinkerability, expressivity, and usability---features commonly considered in the research and design of digital and physical maker media. We conclude with a discussion of affordances and challenges we see in the current generation of tools and labs for supporting making with biology and in which ways these can be expanded to support learning, collaboration, and creativity that are valued in maker education.  more » « less
Award ID(s):
1840933
PAR ID:
10314091
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 9th Annual Conference on Maker Education (FabLearn '20)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While much research focused on making emphasizes digital and tangible media, few studies have explored making with biology, or biomaking, where people use cells as fabrication units to grow or “make” desired materials for designing real world applications. This lack is especially glaring considering how biomaking and related industries are often aligned with a growing push toward sustainable production as a way of addressing the pressing environmental issues of the day. In order address how maker frameworks could be used as a productive way of bringing biomaking into K-12 contexts, we report on the design and implementation of a biomaking workshop where teams of high school students both assembled a physical biosensor and imagined applications for this technology to address real world issues. Using classroom observations, analysis of classroom projects, and focus group interviews, we examined student experiences and perceptions of these activities in order to ask: What the affordances and challenges of biomaking in supporting maker learning, especially with regard to the less common practices of assembly and imagining? In the discussion, we review what we learned about facilitating biomaking in K-12 setting, as well how our analysis led us to a revaluation of the often crucial but neglected role assembly plays in more ‘typical’ maker activities, and the possibilities for enriching maker activities by including design prototyping and imagination. 
    more » « less
  2. Most research on K-12 educational making has focused on tinkering with tangible and digital materials and processes within STEM disciplines like computing and engineering. Despite the growing fields of bioengineering and synthetic biology, far fewer studies have explored educational making possibilities in these realms. In this study we explore students’ engagement with biomaking, where people can make new materials and artifacts by genetically manipulating microorganisms. We examined 34 high school students’ experiences and reflections on making biologos by growing color pigments and making biosensors by creating fluorescent reactions. Through observations of workshop interactions and focus group interviews, we found that biomaking primarily engages students with assembly, or step-by-step, processes rather than experimentation or tinkering with materials. In the discussion we address the potentials and affordances of assembly practices in promoting rich learning experiences not just in biomaking, but also in other K-12 maker contexts. 
    more » « less
  3. Maker activities help students connect to STEAM content through hands-on activities that emphasize the roles of mentors, peers, and in-person interaction with physical artifacts. Despite the positive affordances of these activities, they do not translate well to online settings. Without immediate in-person feedback mechanisms, unstructured making activities may lead to frustration and decreased engagement. How do communities help students develop identities as future engineers if local help and mentorship is not available? The proposed study aims to address challenges of scaffolding collaboration during remote maker sessions through investigation of a novel projection device that allows users to talk & share gestures around a common physical artifact while in separate locations. 
    more » « less
  4. B. Tangney, J. Bryne (Ed.)
    A 1971 memo by Papert and Solomon introduced twenty things to do with a computer which became the foundation for constructionism. In this paper, we propose bringing constructionist activities into making with living materials. Significant developments in tools and methods have turned biology into a design science: it is now possible to make things with biology—or biodesign— rather than just observing processes and behaviours. Our list of twenty things to make with biology includes examples from making colours, toys, games, insulin, batteries, sensors and more. In the discussion, we review how making with biology addresses key affordances of constructionist learning: “tinkerability,” the ability to experiment; “perceptibility,” the immediacy of feedback on learning process; “expressivity,” the personal customization of products; and “usability,” the ability to use learning designs in everyday contexts. We conclude with an overview of accessible and affordable tools available to K-12 education. 
    more » « less
  5. null (Ed.)
    Classes involving physical making were severely disrupted by COVID-19. As workshops, makerspaces, and fab labs shut down in Spring 2020, instructors developed new models for teaching physical prototyping, electronics production, and digital fabrication at a distance. Instructors shipped materials and equipment directly to students, converted makerspaces to job-shops, and substituted low-tech construction methods and hobbyist equipment for industrial tools. The experiences of students and instructors during the pandemic highlighted new learning opportunities when making outside the makerspace. Simultaneously, the shutdown raised new questions on the limits of remote learning for digital fabrication, electronics, and manual craft. This panel brings together experts in making to discuss their experiences teaching physical production in art, design, and engineering during the pandemic. Panelists will discuss their teaching strategies, describe what worked and what did not, and argue for how we can best support students learning hands-on skills going forward. 
    more » « less