The interaction between climate and the hydrologic cycle is complex due to intricate feedback mechanisms that can have multiple impacts on key hydrologic variables. Under a changing climate, it is becoming increasingly important for undergraduate engineering students to have a better understanding of climate and the hydrologic cycle to ensure future engineering systems are more climate resilient. One way of teaching undergraduate students about these key interactions between climate and the hydrologic cycle is through numerical models that mimic these relationships. However, this is difficult to do in an undergraduate engineering course because these models are complex, and it is not feasible to devote class time and resources to teaching students the knowledge base required to run and analyze these numerical models. In addition, the recent COVID-19 pandemic required a rapid change to flexible teaching methods that can be implemented in online, hybrid, or in-person courses. To overcome these limitations, a backward design and constructive alignment approach was used to develop an active learning module in the HydroLearn framework that allows students to explore the connection between snow processes and streamflow and how this will change under different climate scenarios using numerical models and analysis. This learning module provides learningmore »
REACH Projector: Remote Embodiment for Augmented Collaborative Help
Maker activities help students connect to STEAM content through hands-on activities that emphasize the roles of mentors, peers, and in-person interaction with physical artifacts. Despite the positive affordances of these activities, they do not translate well to online settings. Without immediate in-person feedback mechanisms, unstructured making activities may lead to frustration and decreased engagement. How do communities help students develop identities as future engineers if local help and mentorship is not available? The proposed study aims to address challenges of scaffolding collaboration during remote maker sessions through investigation of a novel projection device that allows users to talk & share gestures around a common physical artifact while in separate locations.
- Award ID(s):
- 2048833
- Publication Date:
- NSF-PAR ID:
- 10353409
- Journal Name:
- 15th International Conference on Computer-Supported Collaborative Learning
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While the building industry has a major impact on the US economy, it is one that is often criticized for poor productivity and waste resulted from interoperability. Additionally, the impending labor shortage requires that this is industry becomes one that can do more with less in order to remain effective. As part of preparing civil engineering students for careers in this industry and to design/build infrastructure that is responsive to changing societal needs, educators have aimed to replicate the processes associated with real-world projects through design/build educational activities (like the Department of Energy’s (DOE) Solar Decathlon, Sacramento Municipal Utility District’s (SMUD) Tiny House Competition, and DOE’s Challenge Home Competition) as part of helping students situate civil engineering concepts in an authentic learning environment. Unfortunately, not all universities have the financial resources necessary to fund these types of hands-on projects. Thankfully, technology has the potential to mitigate some of these inequities. This paper presents an update on a three-year NSF-funded project that aims to: develop mixed reality (MR) technology aimed at sufficiently replicating physical design and construction learning environments to enable access to students at institutions without sufficient resources; and assess the impact of a MR-facilitated cyberlearning environment on cognitive-, affective-,more »
-
The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposesmore »
-
The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposesmore »
-
The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposesmore »