skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low frequency electrochemical noise in AlGaN/GaN field effect transistor biosensors
Little has been studied on how the electrochemical noise impacts the limit of detection of field effect transistor (FET) biosensors. Herein, we investigate low frequency noise associated with phosphate-buffered saline (PBS) solutions at varying ionic strengths (Ni) under both weak and strong gate biases corresponding to saturation and sub-threshold regimes, respectively, in AlGaN/GaN heterojunction FET biosensors. We show that the electrochemical noise is strongly dependent on the ionic strength and gate biasing conditions. In the saturation regime (low bias), varying the ionic strength (a range of 10−6× PBS to PBS 1 × stock solutions used for testing) has little to no effect on the characteristic frequency exponent 𝛽(𝛽=1), indicating a predominately diffusion-based process. Conversely, under higher biases (sub-threshold regime), the β parameter varies from 1 to 2 with ionic strength exhibiting both diffusion and drift characteristics, with a “cut point” at approximately 10−5× PBS (𝑁𝑖≈9×1014/mL). Under a high bias, once the PBS concentration reaches 10−3×, the behavior is then drift dominant. This indicates that the higher bias likely triggers electrochemical reactions and by extension, faradaic effects at most physiologically relevant ionic strengths. The signal-to-noise ratio (SNR) of the device has an inverse linear relationship with the low frequency current noise. The device exhibits a higher SNR in the sub-threshold regime than in the saturation regime. Specifically, within the saturation regime, an inversely proportional relationship between the SNR and the ionic concentration is observed. The electrochemical noise induced from ionic activities is roughly proportional to 𝑁−1/2𝑖.  more » « less
Award ID(s):
1809570
PAR ID:
10314193
Author(s) / Creator(s):
Date Published:
Journal Name:
Applied physics letters
Volume:
117
ISSN:
1520-8842
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A systematic analysis is used to understand electrical drift occurring in field‐effect transistor (FET) dissolved‐analyte sensors by investigating its dependence on electrode surface‐solution combinations in a remote‐gate (RG) FET configuration. Water at pH 7 and neat acetonitrile, having different dipoles and polarizabilities, are applied to the RG surface of indium tin oxide, SiO2, hexamethyldisilazane‐modified SiO2, polystyrene, poly(styrene‐co‐acrylic acid), poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), and poly [3‐(3‐carboxypropyl)thiophene‐2,5‐diyl] (PT‐COOH). It is discovered that in some cases a slow reorientation of dipoles at the interface induced by gate electric fields causes severe drift and hysteresis because of induced interface potential changes. Conductive and charged P3HT and PT‐COOH increase electrochemical stability by promoting fast surface equilibrations. It is also demonstrated that pH sensitivity of P3HT (17 mV per pH) is an indication of proton doping. PT‐COOH shows further enhanced pH sensitivity (30 mV per pH). This combination of electrochemical stability and pH response in PT‐COOH are proposed as advantageous for polymer‐based biosensors. 
    more » « less
  2. We report a new physics-based model for dual-gate amorphous-indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) which we developed and fine-tuned through experimental implementation and benchtop characterization.We fabricated and characterized a variety of test patterns, including a-IGZO TFTs with varying gate widths (100–1000 μm) and channel lengths (5–50 μm), transmission-line-measurement patterns and ground–signal–ground (GSG) radio frequency (RF) patterns. We modeled the contact resistance as a function of bias, channel area, and temperature, and captured all operating regimes, used physics-based modeling adjusted for empirical data to capture the TFT characteristics including ambipolar subthreshold currents, graded interbias-regime current changes, threshold and flat-band voltages, the interface trap density, the gate leakage currents, the noise, and the relevant small signal parameters. To design high-precision circuits for biosensing, we validated the dc, small signal, and noise characteristics of the model. We simulated and fabricated a two-stage common source amplifier circuit with a common drain output buffer and compared the measured and simulated gain and phase performance, finding an excellent fit over a frequency range spanning 10 kHz–10 MHz. 
    more » « less
  3. Abstract Inorganic salts present in the atmosphere may affect the composition and abundance of secondary organic aerosol. Here, we quantify the effects of salt identity, salt concentration (ionic strength), and solution pH on the partitioning of ambient water‐soluble organic gases (WSOCg) at a site in the eastern United States. The experimental pH (pH = 1–6) and ionic strengths (10−3–101 mol kg−1) span a wide range of conditions found in atmospheric particles, clouds, and fog droplets. Chloride salts (NaCl, NH4Cl, and KCl) exhibit a strong salting‐out effect at all ionic strengths >0.005 mol kg−1and pH = 1.8–6. In contrast, sulfate salts (Na2SO4, (NH4)2SO4, and K2SO4) induce both salting‐in and salting‐out behaviors, depending on ionic strength and pH. These results suggest that monovalent cations have minimal effect, while ionic strength, pH, and anion identity exert strong effects on the partitioning of ambient organic gases in the atmosphere. 
    more » « less
  4. Abstract Random‐noise‐induced biases are inherent issues to the accurate derivation of second‐order statistical parameters (e.g., variances, fluxes, energy densities, and power spectra) from lidar and radar measurements. We demonstrate here for the first time an altitude‐interleaved method for eliminating such biases, following the original proposals by Gardner and Chu (2020,https://doi.org/10.1364/ao.400375) who demonstrated a time‐interleaved method. Interleaving in altitude bins provides two statistically independent samples over the same time period and nearly the same altitude range, thus enabling the replacement of variances that include the noise‐induced biases with covariances that are intrinsically free of such biases. Comparing the interleaved method with previous variance subtraction (VS) and spectral proportion (SP) methods using gravity wave potential energy density calculated from Antarctic lidar data and from a forward model, this study finds the accuracy and precision of each method differing in various conditions, each with its own strengths and weakness. VS performs well in high‐SNR, yet its accuracy fails at lower‐SNR as it often yields negative values. SP is accurate and precise under high‐SNR, remaining accurate in worse conditions than VS would, yet develops a positive bias under low‐SNR. The interleaved method is accurate in all SNRs but requires a large number of samples to drive random‐noise terms in covariances toward zero and to compensate for the reduced precision due to the splitting of return signals. Therefore, selecting the proper bias removal/elimination method for actual signal and sample conditions is crucial in utilizing lidar/radar data, as neglecting this can conceal trends or overstate atmospheric variability. 
    more » « less
  5. The requirements for fault-tolerant quantum error correction can be simplified by leveraging structure in the noise of the underlying hardware. In this work, we identify a new type of structured noise motivated by neutral-atom qubits, biased erasure errors, which arises when qubit errors are dominated by detectable leakage from only one of the computational states of the qubit. We study the performance of this model using gate-level simulations of the XZZX surface code. Using the predicted erasure fraction and bias of metastable 171Yb qubits, we find a threshold of 8.2% for two-qubit gate errors, which is 1.9 times higher than the threshold for unbiased erasures and 7.5 times higher than the threshold for depolarizing errors. Surprisingly, the improved threshold is achieved without bias-preserving controlled-not gates and, instead, results from the lower noise entropy in this model. We also introduce an XZZX cluster state construction for measurement-based error correction, hybrid fusion, that is optimized for this noise model. By combining fusion operations and deterministic entangling gates, this construction preserves the intrinsic symmetry of the XZZX code, leading to a higher threshold of 10.3% and enabling the use of rectangular codes with fewer qubits. We discuss a potential physical implementation using a single plane of atoms and movable tweezers. 
    more » « less