skip to main content


Title: The Effects of Climate Change on Interregional Electricity Market Dynamics on the U.S. West Coast
Abstract

The United States (U.S.) West Coast power system is strongly influenced by variability and extremes in air temperatures (which drive electricity demand) and streamflows (which control hydropower availability). As hydroclimate changes across the West Coast, a combination of forces may work in tandem to make its bulk power system more vulnerable to physical reliability issues and market price shocks. In particular, a warmer climate is expected to increase summer cooling (electricity) demands and shift the average timing of peak streamflow (hydropower production) away from summer to the spring and winter, depriving power systems of hydropower when it is needed the most. Here, we investigate how climate change could alter interregional electricity market dynamics on the West Coast, including the potential for hydroclimatic changes in one region (e.g., Pacific Northwest (PNW)) to “spill over” and cause price and reliability risks in another (e.g., California). We find that the most salient hydroclimatic risks for the PNW power system are changes in streamflow, while risks for the California system are driven primarily by changes in summer air temperatures, especially extreme heat events that increase peak system demand. Altered timing and amounts of hydropower production in the PNW do alter summer power deliveries into California but show relatively modest potential to impact prices and reliability there. Instead, our results suggest future extreme heat in California could exert a stronger influence on prices and reliability in the PNW, especially if California continues to rely on its northern neighbor for imported power to meet higher summer demands.

 
more » « less
Award ID(s):
1639268
NSF-PAR ID:
10448008
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
9
Issue:
12
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Previous studies investigating deep decarbonization of bulk electric power systems and wholesale electricity markets have not sufficiently explored how future grid pathways could affect the grid's vulnerability to hydrometeorological uncertainty on multiple timescales. Here, we employ a grid operations model and a large synthetic weather ensemble to “stress test” a range of future grid pathways for the U.S. West Coast developed by ReEDS, a well‐known capacity planning model. Our results show that gradual changes in the underlying capacity mix from 2020 to 2050 can cause significant “re‐ranking” of weather years in terms of annual wholesale electricity prices (with “good” years becoming bad, and vice versa). Nonetheless, we find the highest and lowest ranking price years in terms of average electricity price remain mostly tied to extremes in hydropower availability (streamflow) and load (summer temperatures), with the strongest sensitivities related to drought. Seasonal dynamics seen today involving spring snowmelt and hot, dry summers remain well‐defined out to 2050. In California, future supply shortfalls in our model are concentrated in the evening and occur mostly during periods of high temperature anomalies in late summer months and in late winter; in the Pacific Northwest, supply shortfalls are much more strongly tied to negative streamflow anomalies. Under our more robust sampling of stationary hydrometeorological uncertainty, we also find that the ratio of dis‐patchable thermal (i.e., natural gas) capacity to wind and solar required to ensure grid reliability can differ significantly from values reported by ReEDS.

     
    more » « less
  2. Abstract

    Electricity and water systems in the Western US (WUS) are closely connected, with hydropower comprising 20% of total annual WUS generation, and electricity related to water comprising about 7% of total WUS electricity use. Because of these interdependencies, the threat of climate change to WUS resources will likely have compounding electricity impacts on the Western Interconnect grid. This study describes a WUS‐wide water system model with a particular emphasis on estimating climate impacts on hydropower generation and water‐related electricity use, which can be linked with a grid expansion model to support climate‐resilient electricity planning. The water system model combines climatically‐driven physical hydrology and management of both water supply and demand allocation, and is applied to an ensemble of 15 climate scenarios out to 2050. Model results show decreasing streamflow in key basins of the WUS under most scenarios. Annual water‐related electricity use increases up to 4%, and by up to 6% during the summer months, driven by growing agricultural demands met increasingly through a shift toward energy‐intensive groundwater to replace declining surface water. Total annual hydropower generation changes by +5% to −20% by mid‐century but declines in most scenarios, with decreases in summer generation by up to nearly −30%. Water‐related electricity use increases tend to coincide with hydropower generation declines, annually and seasonally, demonstrating the importance of concurrently evaluating the climate signal on both water‐for‐energy and energy‐for‐water to inform planning for grid reliability and decarbonization goals.

     
    more » « less
  3. If a trader could predict price changes in the stock market better than other traders, she would make a fortune. Similarly in the electricity market, a trader that could predict changes in the electricity load, and thus electricity prices, would be able to make large profits. Predicting price changes in the electricity market better than other market participants is hard, but in this paper, we show that attackers can manipulate the electricity prices in small but predictable ways, giving them a competitive advantage in the market. Our attack is possible when the adversary controls a botnet of high wattage devices such as air conditioning units, which are able to abruptly change the total demand of the power grid. Such attacks are called Manipulation of Demand via IoT (MaDIoT) attacks. In this paper, we present a new variant of MaDIoT and name it Manipulation of Market via IoT (MaMIoT). MaMIoT is the first energy market manipulation cyberattack that leverages high wattage IoT botnets to slightly change the total demand of the power grid with the aim of affecting the electricity prices in the favor of specific market players. Using real-world data obtained from two major energy markets, we show that MaMIoT can significantly increase the profit of particular market players or financially damage a group of players depending on the motivation of the attacker. 
    more » « less
  4. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  5. Abstract

    Cool materials and rooftop vegetation help achieve urban heating mitigation as they can reduce building cooling demands. This study assesses the cooling potential of different mitigation technologies using Weather Research and Forecasting (WRF)- taking case of a tropical coastal climate in the Kolkata Metropolitan Area. The model was validated using data from six meteorological sites. The cooling potential of eight mitigation scenarios was evaluated for: three cool roofs, four green roofs, and their combination (cool-city). The sensible heat, latent heat, heat storage, 2-m ambient temperature, surface temperature, air temperature, roof temperature, and urban canopy temperature was calculated. The effects on the urban boundary layer were also investigated.

    The different scenarios reduced the daytime temperature of various urban components, and the effect varied nearly linearly with increasing albedo and green roof fractions. For example, the maximum ambient temperature decreased by 3.6 °C, 0.9 °C, and 1.4 °C for a cool roof with 85% albedo, 100% rooftop vegetation, and their combination.

    The cost of different mitigation scenarios was assumed to depend on the construction options, location, and market prices. The potential for price per square meter and corresponding temperature decreased was related to one another. Recognizing the complex relationship between scenarios and construction options, the reduction in the maximum and minimum temperature across different cool and green roof cases were used for developing the cost estimates. This estimate thus attempted a summary of the price per degree of cooling for the different potential technologies.

    Higher green fraction, cool materials, and their combination generally reduced winds and enhanced buoyancy. The surface changes alter the lower atmospheric dynamics such as low-level vertical mixing and a shallower boundary layer and weakened horizontal convective rolls during afternoon hours. Although cool materials offer the highest temperature reductions, the cooling resulting from its combination and a green roof strategy could mitigate or reverse the summertime heat island effect. The results highlight the possibilities for heat mitigation and offer insight into the different strategies and costs for mitigating the urban heating and cooling demands.

     
    more » « less