skip to main content

Title: Urban cooling potential and cost comparison of heat mitigation techniques for their impact on the lower atmosphere

Cool materials and rooftop vegetation help achieve urban heating mitigation as they can reduce building cooling demands. This study assesses the cooling potential of different mitigation technologies using Weather Research and Forecasting (WRF)- taking case of a tropical coastal climate in the Kolkata Metropolitan Area. The model was validated using data from six meteorological sites. The cooling potential of eight mitigation scenarios was evaluated for: three cool roofs, four green roofs, and their combination (cool-city). The sensible heat, latent heat, heat storage, 2-m ambient temperature, surface temperature, air temperature, roof temperature, and urban canopy temperature was calculated. The effects on the urban boundary layer were also investigated.

The different scenarios reduced the daytime temperature of various urban components, and the effect varied nearly linearly with increasing albedo and green roof fractions. For example, the maximum ambient temperature decreased by 3.6 °C, 0.9 °C, and 1.4 °C for a cool roof with 85% albedo, 100% rooftop vegetation, and their combination.

The cost of different mitigation scenarios was assumed to depend on the construction options, location, and market prices. The potential for price per square meter and corresponding temperature decreased was related to one another. Recognizing the complex relationship between scenarios and construction options, the reduction in the maximum and minimum temperature across different cool and green roof cases were used for developing the cost estimates. This estimate thus attempted a summary of the price per degree of cooling for the different potential technologies.

Higher green fraction, cool materials, and their combination generally reduced winds and enhanced buoyancy. The surface changes alter the lower atmospheric dynamics such as low-level vertical mixing and a shallower boundary layer and weakened horizontal convective rolls during afternoon hours. Although cool materials offer the highest temperature reductions, the cooling resulting from its combination and a green roof strategy could mitigate or reverse the summertime heat island effect. The results highlight the possibilities for heat mitigation and offer insight into the different strategies and costs for mitigating the urban heating and cooling demands.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Computational Urban Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The air temperature cooling impacts of infrastructure-based adaptation measures in expanding urban areas and under changing climatic conditions are not well understood. We present simulations conducted with the Weather Research and Forecasting (WRF) model, coupled to a multi-layer urban model that explicitly resolves pedestrian-level conditions. Our simulations dynamically downscale global climate projections, account for projected urban growth, and examine cooling impacts of extensive cool roof deployment in Atlanta, Detroit, and Phoenix (USA). The simulations focus on heatwave events that are representative of start-, middle-, and end-of-century climatic conditions. Extensive cool roof implementation is projected to cause a maximum city-averaged daytime air temperature cooling of 0.38 °C in Atlanta; 0.42 °C in Detroit; and 0.66 °C in Phoenix. We propose a means for practitioners to estimate the impact of cool roof treatments on pedestrian-level air temperature, for a chosen roof reflectivity, with a new metric called the Albedo Cooling Effectiveness (ACE). The ACE metric reveals that, on average, cool roofs in Phoenix are 11% more effective at lowering pedestrian-level air temperature than in Atlanta, and 30% more effective than in Detroit. Cool roofs remain similarly effective under future heatwaves relative to contemporary heatwaves for Atlanta and Detroit, with some indication of increased effectiveness under future heatwaves for Phoenix. By highlighting the underlying factors that drive cooling effectiveness in a trio of cities located in different climatic regions, we demonstrate a robust framework for estimating the pedestrian-level cooling impacts associated with reflective roofs without the need for computationally demanding simulations.

    more » « less
  2. null (Ed.)
    Abstract Air conditioning (AC) demand has recently grown to about 10% of total electricity globally, and the International Energy Agency (IEA) predicts that the cooling requirement for buildings globally increases by three-fold by 2050 without additional policy interventions. The impacts of these increases for energy demand for human comfort are more pronounced in tropical coastal areas due to the high temperatures and humidity and their limited energy resources. One of those regions is the Caribbean, where building energy demands often exceed 50% of the total electricity, and this demand is projected to increase due to a warming climate. The interconnection between the built environment and the local environment introduces the challenge to find new approaches to explore future energy demand changes and the role of mitigation measures to curb the increasing demands for vulnerable tropical coastal cities due to climate change. This study presents mid-of-century and end-of-century cooling demand projections along with demand alleviation measures for the San Juan Metropolitan Area in the Caribbean Island of Puerto Rico using a high-resolution configuration of the Weather Research and Forecasting (WRF) model coupled with Building Energy Model (BEM) forced by bias-corrected Community Earth Systems Model (CESM1) global simulations. The World Urban Database Access Portal Tool (WUDAPT) Land Class Zones (LCZs) bridge the gap required by BEM for their morphology and urban parameters. MODIS land covers land use is depicted for all-natural classes. The baseline historical period of 2008–2012 is compared with climate and energy projections in addition to energy mitigation options. Energy mitigation options explored include the integration of solar power in buildings, the use of white roofs, and high-efficiency heating, ventilation, and air conditioning (HVAC) systems. The impact of climate change is simulated to increase minimum temperatures at the same rate as maximum temperatures. However, the maximum temperatures are projected to rise by 1–1.5 °C and 2 °C for mid- and end-of-century, respectively, increasing peak AC demand by 12.5% and 25%, correspondingly. However, the explored mitigation options surpass both increases in temperature and AC demand. The AC demand reduction potential with energy mitigation options for 2050 and 2100 decreases the need by 13% and 1.5% with the historical periods. Overall, the demand reduction potential varies with LCZs showing a high reduction potential for sparsely built (32%), and low for compact low rise (21%) for the mid-of-century period compared with the same period without mitigation options. 
    more » « less
  3. Abstract

    The global increase of urban impervious land cover poses a significant threat to the integrity of river ecosystems. Hence, it is critical to assess the efficiency of green roofs (GR) to mitigate the negative impacts of urbanization on river ecosystems, such as thermal surges and pollutants. In this study, we evaluated the ecohydrological behaviour of two fully established GR under differing management regimes at the Chicago Botanical Gardens from July to September 2019. The drainage outflow from a non‐vegetated roof, a managed GR (perennial native and non‐native plants) and an unmanaged GR (perennial natural prairie vegetation) were monitored, and thermal dynamics, dissolved organic matter (DOM) composition and nitrate concentration assessed. The managed GR runoff had a lower DOC concentration and less humic‐like DOM signal (SUVA254) compared to the unmanaged GR. In contrast, lower concentrations of nitrate and more recalcitrant DOM (less protein‐like compounds relative to humic‐like compounds) were associated with the unmanaged GR. The unmanaged GR also displayed a greater capacity to reduce thermal surges associated with storm events. Our study provides new information on the implications of GR management for water quality with particular relevance to the urban stream syndrome. Further, the impacts of GR management on the mitigation of thermal surges and DOM composition can help to improve future GR design, as these ecohydrological responses have been largely overlooked to date. Our findings can support future urban planning, particularly for scenarios where green infrastructures are used to mitigate the impacts of climate change on urban river ecosystems.

    more » « less
  4. Heat islands and warming temperatures are a growing global public health concern. Although cities are implementing cooling interventions, little is known about their efficacy. We conducted a literature review of field studies measuring the impact of urban cooling interventions, focusing on cooling centers, misting stations, cool pavements, and cool or green roofs. A total of 23 articles met the inclusion criteria. Studies of cooling centers measured the potential impact, based on evaluations of population proximity and heat-vulnerable populations. Reductions in temperature were reported for misting stations and cool pavements across a range of metrics. Misting station use was evaluated with temperature changes and user questionnaires. The benefits and disadvantages of each intervention are presented, and metrics for evaluating cooling interventions are compared. Gaps in the literature include a lack of measured impacts on personal thermal comfort, limited documentation on intervention costs, the need to standardize temperature metrics, and evaluation criteria.

    more » « less
  5. Temporal dynamics of urban warming have been extensively studied at the diurnal scale, but the impact of background climate on the observed seasonality of surface urban heat islands (SUHIs) remains largely unexplored. On seasonal time scales, the intensity of urban–rural surface temperature differences (ΔTs) exhibits distinctive hysteretic cycles whose shape and looping direction vary across climatic zones. These observations highlight possible delays underlying the dynamics of the coupled urban–biosphere system. However, a general argument explaining the observed hysteretic patterns remains elusive. A coarse-grained model of SUHI coupled with a stochastic soil water balance is developed to demonstrate that the time lags between radiation forcing, air temperature, and rainfall generate a rate-dependent hysteresis, explaining the observed seasonal variations ofΔTs. If solar radiation is in phase with water availability, summer conditions cause strong SUHI intensities due to high rural evaporative cooling. Conversely, cities in seasonally dry regions where evapotranspiration is out of phase with radiation show a summertime oasis effect controlled by background climate and vegetation properties. These seasonal patterns of warming and cooling have significant implications for heat mitigation strategies as urban green spaces can reduceΔTsduring summertime, while potentially negative effects of albedo management during winter are mitigated by the seasonality of solar radiation.

    more » « less